K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

Bài 3: 

b: \(x^2+2x+1=\left(x+1\right)^2\)

c: \(x^2-16=\left(x-4\right)\left(x+4\right)\)

d: \(\left(2x-1\right)^2-\left(x+3\right)^2\)

\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)

\(=\left(x-4\right)\left(3x+2\right)\)

29 tháng 12 2023

Bài 2

a) 5x² + 30y

= 5(x² + 6y)

b) x³ - 2x² - 4xy² + x

= x(x² - 2x - 4y² + 1)

= x[(x² - 2x + 1) - 4y²]

= x[(x - 1)² - (2y)²]

= x(x - 1 - 2y)(x - 1 + 2y)

29 tháng 12 2023

Bài 3:

a: \(2x\left(x-3\right)-x+3=0\)

=>\(2x\left(x-3\right)-\left(x-3\right)=0\)

=>(x-3)(2x-1)=0

=>\(\left[{}\begin{matrix}x-3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)

b: \(\left(3x-1\right)\left(2x+1\right)-\left(x+1\right)^2=5x^2\)

=>\(6x^2+3x-2x-1-x^2-2x-1=5x^2\)

=>\(5x^2-x-2=5x^2\)

=>-x-2=0

=>-x=2

=>x=-2

1 tháng 8 2019

\(a,x^2-xy+9x-9y\)

\(=x\left(x-y\right)+9\left(x-y\right)\)

\(=\left(x+9\right)\left(x-y\right)\)

12 tháng 10 2023

a: \(x^2+4x+4=x^2+2\cdot x\cdot2+2^2=\left(x+2\right)^2\)

b: \(4x^2-4x+1=\left(2x\right)^2-2\cdot2x\cdot1+1^2=\left(2x-1\right)^2\)

c: \(2x-1-x^2\)

\(=-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)

d: \(x^2+x+\dfrac{1}{4}=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)

e: \(9-x^2=3^2-x^2=\left(3-x\right)\left(3+x\right)\)

g: \(\left(x+5\right)^2-4x^2=\left(x+5+2x\right)\left(x+5-2x\right)\)

\(=\left(5-x\right)\left(5+3x\right)\)

h: \(\left(x+1\right)^2-\left(2x-1\right)^2\)

\(=\left(x+1+2x-1\right)\left(x+1-2x+1\right)\)

\(=3x\left(-x+2\right)\)

i: \(=x^2y^2-4xy+4-3\)

\(=\left(xy-2\right)^2-3=\left(xy-2-\sqrt{3}\right)\left(xy-2+\sqrt{3}\right)\)

k: \(=y^2-\left(x-1\right)^2\)

\(=\left(y-x+1\right)\left(y+x-1\right)\)

l: \(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=\left(x+2\right)^3\)

m: \(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2-y^3=\left(2x-y\right)^3\)

19 tháng 11

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

27 tháng 9 2021

a) \(=x^4-14x^2+40-72=x^4-14x^2-32=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b) \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1=\left(x^2+5x\right)^2+2\left(x^2+5x\right)+1=\left(x^2+5x+1\right)^2\)

c) \(=x^4+3x^3-3x^2+3x^3+9x^2-9x+x^2+3x-3-5=x^4+6x^3+7x^2-6x-8=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

a: Ta có: \(\left(x^2-4\right)\left(x^2-10\right)-72\)

\(=x^4-14x^2-32\)

\(=\left(x^2-16\right)\left(x^2+2\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x^2+2\right)\)

b: Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+6\right)\left(x^2+5x+4\right)+1\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24+1\)

\(=\left(x^2+5x+1\right)^2\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Bài 1:

a. 

$(4x^2+4x+1)-x^2=0$

$\Leftrightarrow (2x+1)^2-x^2=0$

$\Leftrightarrow (2x+1-x)(2x+1+x)=0$

$\Leftrightarrow (x+1)(3x+1)=0$

$\Rightarrow x+1=0$ hoặc $3x+1=0$

$\Rightarrow x=-1$ hoặc $x=-\frac{1}{3}$

b.

$x^2-2x+1=4$

$\Leftrightarrow (x-1)^2=2^2$

$\Leftrightarrow (x-1)^2-2^2=0$

$\Leftrightarrow (x-1-2)(x-1+2)=0$

$\Leftrightarrow (x-3)(x+1)=0$

$\Leftrightarrow x-3=0$ hoặc $x+1=0$

$\Leftrightarrow x=3$ hoặc $x=-1$

c.

$x^2-5x+6=0$

$\Leftrightarrow (x^2-2x)-(3x-6)=0$

$\Leftrightarrow x(x-2)-3(x-2)=0$

$\Leftrightarrow (x-2)(x-3)=0$

$\Leftrightarrow x-2=0$ hoặc $x-3=0$

$\Leftrightarrow x=2$ hoặc $x=3$

 

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

2c.

ĐKXĐ: $x\neq 0$

PT $\Leftrightarrow x-\frac{6}{x}=x+\frac{3}{2}$

$\Leftrightarrow -\frac{6}{x}=\frac{3}{2}$

$\Leftrightarrow x=-4$ (tm)

2d.

ĐKXĐ: $x\neq 2$

PT $\Leftrightarrow \frac{1+3(x-2)}{x-2}=\frac{3-x}{x-2}$

$\Leftrightarrow \frac{3x-5}{x-2}=\frac{3-x}{x-2}$

$\Rightarrow 3x-5=3-x$

$\Leftrightarrow 4x=8$

$\Leftrightarrow x=2$ (không tm) 

Vậy pt vô nghiệm.

e) Ta có: \(x^4-2x^3+2x-1\)

\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\cdot\left(x-1\right)^3\)

h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)

\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)

\(=\left(x-y\right)\left(x+5y\right)\)

a) Ta có: \(x^2-y^2-2x-2y\)

\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-2\right)\)

b) Ta có: \(x^2\left(x+2y\right)-x-2y\)

\(=\left(x+2y\right)\left(x^2-1\right)\)

\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)