Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/15 + 4/35 + 4/63 + 4/99 + 4/143
= 8/21 + 8/77 + 4/143
= 16/33 + 4/143
= 20/39
\(\frac{4}{15}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}+\frac{4}{143}\)
\(=2\times\left(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{11\times13}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=2\times\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=2\times\frac{10}{39}\)
\(=\frac{20}{39}\)
Đặt \(B=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
\(\Leftrightarrow B=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(\Leftrightarrow2B=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{13}\right)=1-\frac{3}{13}=\frac{10}{13}\)
\(\Leftrightarrow A=1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}=1+\frac{10}{13}=\frac{23}{13}\)
=1/3*5+1/5*7+1/7*9+...+1/99*101
=1/3-1/5+1/5-1/7+...+1/99-1/101
=1/3-1/101
=98/303
B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)
\(B=\dfrac{4}{3}+\dfrac{4}{15}+\dfrac{4}{35}+...+\dfrac{4}{143}\)
\(=4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})\)
vì \(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143}<\dfrac{1}{2}\) nên \(4(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{143})<4*\dfrac{1}{2}=2\Rightarrow B<2\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{63}+\frac{100}{99}\\ =\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+\frac{8.8}{7.9}+\frac{10.10}{9.11}\)
\(\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+\frac{64}{65}+\frac{100}{99}\)
\(1+\frac{1}{3}+1+\frac{1}{15}+1+\frac{1}{35}+1+\frac{1}{65}+1+\frac{1}{99}\)
\(\left(1+1+1+1+1\right)+\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{65}+\frac{1}{99}\right)\)
\(\frac{60}{11}\)
a) 8 ngày 3 giờ
- 2 ngày 5 giờ
5 ngày 22 giờ
b) 3 giờ 15 phút + 4 giờ 45 phút x 4
= 3 giờ 15 phút + 19 giờ
= 3 giờ 34 phút
k nhé!! Thanks! Bạn gửi lời mời kb cho mik nhé vì mik hết lượt rồi!! Hu hu, giúp mik nhé, âm điểm rồi
bạn Tobiichi Origami nhầm rồi đề bài là tính thuận tiện mà.
4/15+ 4/35+ 4/63+ 4/99=16/33
chúc bạn hok tốt
\(\frac{4}{12}+\frac{4}{35}+\frac{4}{63}+\frac{4}{99}\)
\(=2.\left(\frac{2}{12}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)\)
\(=2.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=2.\left(\frac{11}{33}-\frac{3}{33}\right)\)
\(=2.\frac{8}{33}\)
\(=\frac{16}{33}\)
Tham khảo nhé~