K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LK
10 tháng 9 2016
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
bài 1
a, \(x^2+9y^2-6xy=\left(x-3y\right)^2\)
thay x = 19 , y = 3 vào biểu thức trên ta có
\(\left(19-3.3\right)^2=100\)
b, \(x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
thay x = 12 và y = -4 vào biểu thức trên ta có
\(\left(12-2.\left(-4\right)\right)^3=8000\)
bài 4
a, \(x\left(4x^2-1\right)=0\)
=> \(x\left(2x-1\right)\left(2x+1\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
b, \(x^3-x^2-x+1=0\)
=> \(x^2\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\x^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c, \(2x^2-5x-7=0\)
=> \(2x^2-7x+2x-7=0\)
=> \(2x\left(x+1\right)-7\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(2x-7\right)=0\)
=> \(\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
Bài 2: Rút gọn biểu thức:
a) \(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x-y\right)\left(x+y\right)\)
\(=3\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-\left(x^2-y^2\right)\)
\(=3x^2-6xy+3y^2-2x^2+4xy+2y^2-x^2+y^2\)
\(=2y^2-2xy\)
b)\(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(2x+5\right)^2-3\left(1+4x\right)\left(1-4x\right)\)
\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)
\(=8x^2+40x+50-3+48x^2\)
\(=56x^2+40x+47\)