Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(6a^2-ab-15b^2=0\)
\(\Leftrightarrow6a^2-10ab+9ab-15b^2=0\)
\(\Leftrightarrow2a\left(3a-5b\right)+3b\left(3a-5b\right)=0\)
\(\Leftrightarrow\left(2a+3b\right)\left(3a-5b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3}{2}b\\a=\frac{5}{3}b\end{cases}}\)
-TH1: \(a=\frac{-3}{2}b\) thay vào M ta đc
\(M=\frac{11.\left(\frac{-3}{2}b\right)^2-2b.\frac{-3}{2}b+9b^2}{5\left(\frac{-3}{2}b\right)^2+3b.\frac{-3}{2}b+6b^2}=...\)
Tương tự cho TH2.
BÀi 3: b) Theo đề bài ta có Q(1) = 5; Q(14) = 9
Gọi số dư Q(x) chia cho (x-1)(x-14) là ax+b
=> Q(x) = P(x).(x-1)(x-14) + ax+b
Do đó Q(1) = P(x).(1-1)(1-14) + a.1 + b = a+b => a+b=5
và Q(14) = P(x).(14-1)(14-14) + a.14 + b = 14a+b => 14a+b=9
Giải hệ \(\hept{\begin{cases}a+b=5\\14a+b=9\end{cases}}\) tìm đc \(a=\frac{4}{13};b=\frac{61}{13}\)
Vậy số dư là \(\frac{4}{13}x+\frac{61}{13}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Tìm số tự nhiên aabb biết: $\overline{aabb}=\overline{(a+1)(a+1)}.\overline{(b-1)(b-1)}$ - Số học - Diễn đàn Toán học
4. Bấm tổng sigma Shift + log
x = 1
cái số ở trên là 100
trong ngoặc là \(\left(\frac{X\left(-1\right)^{X+1}}{\left(X+1\right)\left(X+2\right)}\right)\)
kết quả: 0.07461166509
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)
Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)
\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)
Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)
\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)
\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)
Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)
Bài 3:
Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)
Khi đó:
\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)
Thật vậy vì ta có:
\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)
\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)
\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng BĐT Cauchy ta có:
\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)
Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)