Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left(-0,125\right)\times7,9\times80\)
\(=\left(-0,9875\right)\times80\)
\(=79.\)
\(\left(0,125\right)\times1\times0,25\times8\times\left(-4\right)\)
\(=0,125\times0,25\times8\times\left(-4\right)\)
\(=0,03125\times8\times\left(-4\right)\)
\(=0,25\times\left(-4\right)\)
\(=\left(-1\right).\)
Bài 2:
\(x+\frac{8}{3}^2=\frac{1}{9}\)
\(x+16=\frac{1}{9}\)
\(x=\frac{1}{9}-16.MSC=9\)
\(x=\frac{1}{9}-\frac{144}{9}\)
\(x=\frac{-143}{9}.\)
b: =1,6+2,7-4,2-94*0,7+99*2,7
=100*2,7-100*0,7+1,6
=200+1,6
=201,6
a: \(=\dfrac{4832}{16038}=\dfrac{2416}{8019}\)
\(S=1+0,5+0,25+0,125+0,0625+0,03125+...\)
\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...\)
\(2S=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...\)
\(2S-S=\left(2+1+\frac{1}{2}+\frac{1}{4}+...\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)\)
\(S=2-...\)
Bạn không ghi rõ số cuối nên mình làm thế này
Mk chỉ bạn cách làm rồi đó
\(1,\\ a,=\left(\dfrac{1}{4}\right)^3\cdot32=\dfrac{1}{64}\cdot32=\dfrac{1}{2}\\ b,=\left(\dfrac{1}{8}\right)^3\cdot512=\dfrac{1}{512}\cdot512=1\\ c,=\dfrac{2^6\cdot2^{10}}{2^{20}}=\dfrac{1}{2^4}=\dfrac{1}{16}\\ d,=\dfrac{3^{44}\cdot3^{17}}{3^{30}\cdot3^{30}}=3\\ 2,\\ a,A=\left|x-\dfrac{3}{4}\right|\ge0\\ A_{min}=0\Leftrightarrow x=\dfrac{3}{4}\\ b,B=1,5+\left|2-x\right|\ge1,5\\ A_{min}=1,5\Leftrightarrow x=2\\ c,A=\left|2x-\dfrac{1}{3}\right|+107\ge107\\ A_{min}=107\Leftrightarrow2x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{6}\)
\(d,M=5\left|1-4x\right|-1\ge-1\\ M_{min}=-1\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\\ 3,\\ a,C=-\left|x-2\right|\le0\\ C_{max}=0\Leftrightarrow x=2\\ b,D=1-\left|2x-3\right|\le1\\ D_{max}=1\Leftrightarrow x=\dfrac{3}{2}\\ c,D=-\left|x+\dfrac{5}{2}\right|\le0\\ D_{max}=0\Leftrightarrow x=-\dfrac{5}{2}\)
Ta có: \(A=\frac{\frac{3}{11}+1-\frac{3}{7}}{3+\frac{9}{11}-\frac{9}{7}}-\frac{\frac{1}{3}+0,25-\frac{1}{5}+0,125}{\frac{7}{6}+\frac{7}{8}-0,7+\frac{7}{16}}\)
\(=\frac{3\left(\frac{1}{11}+\frac{1}{3}-\frac{1}{7}\right)}{9\left(\frac{1}{3}+\frac{1}{11}-\frac{1}{7}\right)}-\frac{2\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}+\frac{1}{16}\right)}{7\left(\frac{1}{6}+\frac{1}{8}-\frac{1}{10}+\frac{1}{16}\right)}\)
\(=\frac{3}{9}-\frac{2}{7}=\frac{1}{3}-\frac{2}{7}=\frac{7}{21}-\frac{6}{21}=\frac{1}{21}\)
Vậy \(A=\frac{1}{21}\)
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
a,=\(\frac{1}{2}\)
b,-80000
c,\(\frac{1}{16}\)
d,\(1,271734748x10^{29}\)