\(\dfrac{2.58^2-242^2}{254^2-246^2}\)

B = 263

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Sửa đề: \(B=263^2+54\cdot263+27^2\)

\(=263^2+2\cdot263\cdot27+27^2\)

\(=\left(263+27\right)^2=290^2=84100\)

c: \(C=136^2-2\cdot46\cdot136+46^2\)

\(=\left(136-46\right)^2=90^2=8100\)

d: \(D=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)

\(=50+49+...+2+1\)

Số số hạng là (50-1):1+1=50(số)

Tổng là;

\(D=\dfrac{\left(50+1\right)\cdot50}{2}=51\cdot25=1225\)

14 tháng 6 2017

Ta có :

\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)

\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)

\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)

\(\Rightarrow dpcm\)

Vậy : ..............

a: \(x^2-10x+26+y^2+2y=0\)

\(\Leftrightarrow x^2-10x+25+y^2+2y+1=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(y+1\right)^2=0\)

=>x=5 hoặc y=-1

b: \(x^2-6x+13+y^2+4y=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=0\)

=>x=3 và y=-2

kcjHoàng Oanh

1.\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)

Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)

=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)

=>\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(a/d t/c của dãy tỉ số bằng nhau)

=>\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)

3 tháng 7 2018

\(\frac{63^2-47^2}{215^2-105^2}=\)  \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)

                           \(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)

các câu kia làm tương tự nha

6 tháng 7 2018

Thanks bạn nhiều nhiều nha!

8 tháng 4 2017

Ta có:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\)

\(\dfrac{\left(a-b\right)^2}{2ab}\ge0\)

=> \(\dfrac{\left(a-b\right)^2}{2ab}+4\ge4\) (1)

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1+\dfrac{a}{b}+\dfrac{b}{a}+1=\dfrac{a}{b}+\dfrac{b}{a}+2\) (2)

Vì a,b>0 ,áp dụng bất đẳng thức Côsy

Ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Kết hợp với (2) ta có: \(\dfrac{a}{b}+\dfrac{b}{a}+2\ge4\)

Và từ (1)

=> \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\left(đpcm\right)\)

Mình cũng không chắc nữa,bạn có thể xem lại

Chúc bạn học tốt haha

9 tháng 4 2017

cảm ơn bạn nhìu

29 tháng 4 2017

\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)

23 tháng 10 2017

a )

Để A \(⋮\) B thì \(x^n\ge x^3\) \(\Rightarrow n\ge3\)

Để M \(⋮\) N thì \(y^n\ge y^2\Rightarrow n\ge2\)

23 tháng 10 2017

a, A= 5\(x^ny^3\)

B= 4\(x^3y\)

=> A\(⋮\)B -> n \(\ge\)3

b, làm tương tự như trên