Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)
\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)
\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)
\(\Rightarrow dpcm\)
Vậy : ..............
a: \(x^2-10x+26+y^2+2y=0\)
\(\Leftrightarrow x^2-10x+25+y^2+2y+1=0\)
\(\Leftrightarrow\left(x-5\right)^2+\left(y+1\right)^2=0\)
=>x=5 hoặc y=-1
b: \(x^2-6x+13+y^2+4y=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=0\)
=>x=3 và y=-2
1.\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
=>\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(a/d t/c của dãy tỉ số bằng nhau)
=>\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
\(\frac{63^2-47^2}{215^2-105^2}=\) \(\frac{\left(63-47\right)\left(63+47\right)}{\left(215-105\right)\left(215+105\right)}\)
\(=\frac{16.110}{110.320}=\frac{16}{320}\)\(=\frac{1}{20}\)
các câu kia làm tương tự nha
Ta có:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\)
Vì \(\dfrac{\left(a-b\right)^2}{2ab}\ge0\)
=> \(\dfrac{\left(a-b\right)^2}{2ab}+4\ge4\) (1)
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1+\dfrac{a}{b}+\dfrac{b}{a}+1=\dfrac{a}{b}+\dfrac{b}{a}+2\) (2)
Vì a,b>0 ,áp dụng bất đẳng thức Côsy
Ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Kết hợp với (2) ta có: \(\dfrac{a}{b}+\dfrac{b}{a}+2\ge4\)
Và từ (1)
=> \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\left(đpcm\right)\)
Mình cũng không chắc nữa,bạn có thể xem lại
Chúc bạn học tốt
\(\sqrt{6}+\sqrt{6}+\sqrt{6}+...+\sqrt{6}=n\sqrt{6}\)(n là số số hạng của tổng các căn)
a )
Để A \(⋮\) B thì \(x^n\ge x^3\) \(\Rightarrow n\ge3\)
Để M \(⋮\) N thì \(y^n\ge y^2\Rightarrow n\ge2\)
a, A= 5\(x^ny^3\)
B= 4\(x^3y\)
=> A\(⋮\)B -> n \(\ge\)3
b, làm tương tự như trên
b: Sửa đề: \(B=263^2+54\cdot263+27^2\)
\(=263^2+2\cdot263\cdot27+27^2\)
\(=\left(263+27\right)^2=290^2=84100\)
c: \(C=136^2-2\cdot46\cdot136+46^2\)
\(=\left(136-46\right)^2=90^2=8100\)
d: \(D=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(=50+49+...+2+1\)
Số số hạng là (50-1):1+1=50(số)
Tổng là;
\(D=\dfrac{\left(50+1\right)\cdot50}{2}=51\cdot25=1225\)