Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{a+b+a-b}{a^2-b^2}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{2a^3+2a^2b^2+2a^3-2ab^2}{a^4-b^4}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{4a^7+4a^3b^4+4a^7-4a^3b^4}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^7}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^{15}+8a^7b^8+8a^{15}-8a^7b^8}{a^{16}-b^{16}}=\dfrac{16a^{15}}{a^{16}-b^{16}}\)
Trả lời:
a, \(x+5x^2=0\)
\(\Leftrightarrow x\left(1+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\1+5x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}}\)
Vậy x = 0; x = - 1/5 là nghiệm của pt.
b, \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
Bài 62: 25x2y6-60xy4z2+36y2z4=(5xy3)2-2.5xy3.(6yz2)2
Bài 63: 1/9u4v6-1/3u5v4+(1/2u3v)=(1/3u2v3)-2.1/3u2v3.1/2u2v3+(1/2u3v)
Trả lời:
a) x2 + 4y2 + 4xy = x2 + 2.x.2y + (2y)2 = ( x + 2y )2
b) \(\frac{1}{64}-27x^3=\left(\frac{1}{4}\right)^3-\left(3x\right)^3=\left(\frac{1}{4}-3x\right)\left(\frac{1}{16}+\frac{3}{4}x+9x^2\right)\)
c) x3 - 6x2 + 12x - 8 = x3 - 3.x2.2 + 3.x.22 - 23 = ( x - 2 )3
d) x2 - x - y2 - y = ( x2 - y2 ) - ( x + y ) = ( x - y )( x + y ) - ( x + y ) = ( x + y )( x - y - 1 )
e) 5x - 5y + ax - ay = ( 5x - 5y ) + ( ax - ay ) = 5 ( x - y ) + a ( x - y ) = ( x - y )( 5 + a )
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
a) \(73^2-27^2=\left(73+27\right)\left(73-27\right)=100.46=4600\)
b) \(55^2+20^2-25^2+40.45=\left(55^2-25^2\right)+\left(20^2+40.45\right)\)
\(=\left(55-25\right)\left(55+25\right)+\left(40.10+40.45\right)=30.80+40.55\)
\(=40\left(60+55\right)=40.115=4600\)