K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Bài 1 : Ta có :

\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)

\(=x^3+3x^2-5x-15-x^3+-3x^2+4x\)

\(=-x-15\)

a ) Thay \(x=0\) vào biểu thức trên ta có : \(-0-15=-15\)

b ) Thay \(x=-15\) vào biểu thức trên ta có : \(-\left(-15\right)-15=0\)

c ) Thay \(x=0,15\) vào biểu thức trên ta có : \(-0,15-15=-15,15\)

7 tháng 7 2019

Rút gọn biểu thức:

A = (x2 – 5)(x + 3) + (x + 4)(x – x2)

   = x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)

   = x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)

   = x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2

   = (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15

   = –x – 15.

a) Nếu x = 0 thì A = –0 – 15 = –15

b) Nếu x = 15 thì A = –15 – 15 = –30

c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0

d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15

23 tháng 9 2017

Vì A = 16 x 2 – 24 + 9 = ( 4 x   –   3 ) 2  nên:

a) x= 0 thì A = 9;                        b) x = 1 4  thì A = 4;

c) x = 12 thì A = 2025;               d) x = 3 4 thì A = 0.

26 tháng 8 2021

a) \(P=x\left(x-y\right)+y\left(x-y\right)=\left(x-y\right)\left(x+y\right)=x^2-y^2=5^2-4^2=9\)

b) \(Q=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=0\)

31 tháng 8 2017

\(a.\)

Thay \(x=0\) vào \(\left(x-x^2\right)\) , ta được :

\(\left(0-0^2\right)=0\)

\(\Rightarrow\left(x^2-5\right)\left(x+3\right)\left(x+4\right)\left(x-x^2\right)=\left(x^2-5\right)\left(x+3\right)\left(x+4\right).0=0\)

Tương tự các câu còn lại

5 tháng 12 2023

a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)

= x³ - 125 - x² + 4 + x³ + x² + 4x

= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)

= 2x³ + 4x - 121

b) Tại x = -2 ta có:

A = 2.(-2)³ + 4.(-2) - 121

= 2.(-8) - 8 - 121

= -16 - 129

= -145

c) x² - 1 = 0

x² = 1

x = -1; x = 1

*) Tại x = -1 ta có:

A = 2.(-1)³ + 4.(-1) - 121

= 2.(-1) - 4 - 121

= -2 - 125

= -127

*) Tại x = 1 ta có:

A = 2.1³ + 4.1 - 121

= 2.1 + 4 - 121

= 2 - 117

= -115

19 tháng 4 2017

(x2 – 5)(x + 3) + (x + 4)(x – x2)

= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2

= x3 – x3 + x2 – 4x2 – 5x + 4x - 15

= -x - 15

a) với x = 0: - 0 - 15 = -15

b) với x = 15: - 15 - 15 = 30

c) với x = -15: -(-15) - 15 = 15 -15 = 0

d) với x = 0,15: -0,15 - 15 = -15,15.



19 tháng 4 2017

Trước hết thực hiện phép tính và rút gọn, ta được:

(x2 – 5)(x + 3) + (x + 4)(x – x2)

= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2

= x3 – x3 + x2 – 4x2 – 5x + 4x - 15

= -x - 15

a) Với x = 0: - 0 - 15 = -15

b) Với x = 15: - 15 - 15 = 30

c) Với x = -15: -(-15) - 15 = 15 -15 = 0

d) Với x = 0,15: -0,15 - 15 = -15,15.



30 tháng 1 2018

{x ∈Z | - 5 ≤ x ≤ 5 } ⇒ x ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}

Phương trình (1) có nghiệm là x = 3 và x = 5.

Phương trình (2) có nghiệm là x = 0.

Phương trình (3) không có nghiệm.

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)