Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{{ - 3}}{7}.\frac{2}{5} + \frac{2}{5}.\left( { - \frac{5}{{14}}} \right) - \frac{{18}}{{35}}\)
\(\begin{array}{l} = \frac{2}{5}.\left( {\frac{{ - 3}}{7} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\left( {\frac{{ - 6}}{{14}} + \frac{{ - 5}}{{14}}} \right) - \frac{{18}}{{35}}\\ = \frac{2}{5}.\frac{{ - 11}}{{14}} - \frac{{18}}{{35}} = \frac{{ - 11}}{{35}} - \frac{{18}}{{35}} = \frac{{ -29}}{{35}}\end{array}\)
b) \(\left( {\frac{2}{3} - \frac{5}{{11}} + \frac{1}{4}} \right):\left( {1 + \frac{5}{{12}} - \frac{7}{{11}}} \right)\)
\(\begin{array}{l} = \left( {\frac{{2.11.4}}{{3.11.4}} - \frac{{5.3.4}}{{11.3.4}} + \frac{{1.3.11}}{{4.3.11}}} \right):\left( {\frac{11.12}{11.12} + \frac{{5.11}}{{12.11}} - \frac{{7.12}}{{11.12}}} \right)\\ = \left( {\frac{{88 - 60 + 33}}{{121}}} \right):\left( { \frac{{121+55 - 84}}{{121}}} \right)\\ = \frac{{61}}{{121}}:\frac{{92}}{{121}} = \frac{{61}}{{121}}.\frac{{121}}{{92}}= \frac{{61}}{{92}}\end{array}\)
c) \(\left( {13,6 - 37,8} \right).\left( { - 3,2} \right)\)
\( = \left( { - 24,2} \right).\left( { - 3,2} \right) = 77,44\)
d) \(\left( { - 25,4} \right).\left( {18,5 + 43,6 - 16,8} \right):12,7\)
\(\begin{array}{l} = \left( { - 25,4} \right).\left( {62,1 - 16,8} \right):12,7\\ = \left( { - 25,4} \right).45,3:12,7\\ = \left( { - 25,4} \right):12,7.45,3\\ = (- 2).45,3 = - 90,6\end{array}\)
a: \(=\dfrac{2}{5}\cdot\left(-\dfrac{3}{7}-\dfrac{5}{14}\right)-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-6-5}{14}-\dfrac{18}{35}\)
\(=\dfrac{2}{5}\cdot\dfrac{-11}{14}-\dfrac{18}{35}=-\dfrac{22}{70}-\dfrac{18}{35}=\dfrac{-58}{70}=-\dfrac{29}{35}\)
b: \(=\dfrac{88-60+33}{132}:\dfrac{132+55-84}{132}\)
\(=\dfrac{61}{132}\cdot\dfrac{132}{103}=\dfrac{61}{103}\)
c: \(=-24.2\cdot\left(-3.2\right)=24.2\cdot3.2=77.44\)
d: \(=\dfrac{-25.4}{12.7}\cdot45.3=-2\cdot45.3=-90.6\)
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
Bài 1:
\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)
Bài 2
\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)
Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)
Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)
Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)
\(\left(\frac{12}{32}+\frac{5}{-20}-\frac{10}{24}\right):\frac{2}{3}=\left(\frac{1}{8}-\frac{10}{24}\right):\frac{2}{3}=-\frac{7}{24}:\frac{2}{3}=-\frac{7}{16}\)
\(4\frac{1}{2}:\left(2,5-3\frac{3}{4}\right)+\left(\frac{1}{2}\right)^2=\frac{9}{2}:\left(2,5-\frac{15}{4}\right)+\frac{1}{4}=\frac{9}{2}:-\frac{5}{4}+\frac{1}{4}=-\frac{18}{5}+\frac{1}{4}=-\frac{67}{20}\)