K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

a)Ta có: \(x^2\ge0\Rightarrow x^2+3\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

Vậy \(A_{Min}=3 khi x=0\)

b) \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-5\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy \(B_{Min}=-5khix=-\dfrac{1}{2}\)

c) \(\left(2x-1\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\left(3y-2\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{2}{3}\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(3y-2\right)^{2008}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(C_{Min}=0khix=\dfrac{1}{2}vày=\dfrac{2}{3}\)

28 tháng 10 2016

x=2009 => 2008 = x-1 

Thay  x=2009 và 2008 = x -1  vào A: 

\(A=x^{2009}-\left(x-1\right)\cdot x^{2008}-\left(x-1\right)\cdot x^{2007}-...-\left(x-1\right)\cdot x+1\)

\(=x^{2009}-x^{2009}+x^{2008}-x^{2008}+.....-x^2+x+1\)

\(=x+1=2009+1=2010\)

30 tháng 7 2021

2010 nha

11 tháng 11 2016

Ta có 

\(\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{2008}}{a_1}=\frac{a_1+...+a_{12}+...+a_{2008}}{a_2+a_3+...+a_1}=1\)

Từ đó a1 = a2 = a= ... = a2008

\(\Rightarrow N=\frac{a^2_1+a^2_2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{2008a^2_1}{\left(2008a_1\right)^2}=\frac{1}{2008}\)

11 tháng 11 2016

alibaba mình nghĩ là thay dấu + là dấu = sẽ đúng hơn

Ta thấy : \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y+z\right|\ge0\)

Để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y=z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-1}{2}-\frac{2}{5}\end{cases}}\)

6 tháng 11 2016

dễ ợt 2008

1 tháng 4 2018

giải đi chứ