K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

 \(\frac{2^5.7+2^5.59}{2^5.5^2-2^5.3}\)

=\(\frac{\left(2^5\right).\left(7+59\right)}{\left(2^5\right).\left(5^2-3\right)}\)

=\(\frac{7+59}{5^2-3}\)

=\(\frac{64}{22}\)

=\(\frac{32}{11}\)

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 + ... + 2/41.43

= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/41 - 1/43

= 1/3 - 1/43

= 40/129

ỦNG HỘ NHA

12 tháng 8 2016

2/3.5 + 2/5.7 + 2/7.9 +......+ 2/41.43

= 1/3-1/5 + 1/5-1/7 + 1/7-1/9 +.....+ 1/41-1/43

= 1/3-1/43

= 40/129.

15 tháng 2 2015

(2/1+2/3) + (2/3+2/5) + (2/5+2/7) + ...+ (2/77+2/79)                                                                                                                    2/1 - 2/79                                                                                                                                                                                156/79

16 tháng 7 2016

\(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{37.39}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{37}-\frac{1}{39}\)

\(=\frac{1}{3}-\frac{1}{39}\)

\(=\frac{13}{39}-\frac{1}{39}\)

\(=\frac{12}{39}=\frac{4}{13}\)

16 tháng 7 2016

ta có A=1/3-1/5+1/5-1/7+1/7-1/9+....+1/37-1/39

          =1/3-1/39

          =12/39

14 tháng 4 2017

\(\frac{1}{n\left(n+1\right)}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n-1}\)

Áp dụng ta có:

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Tính C tương tự, áp dụng:

\(\frac{2}{n\left(n+2\right)}=\frac{n+2-n}{n\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+2}\)

B = 9899/9900

C=I don't know !! 

Ủng hộ nhé !

28 tháng 4 2019

Kết quả =672/2019

28 tháng 4 2019

Mình chỉ sửa đề thôi nhé!!!

Tính \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}\)

Giải:

\(=1\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\) 

\(=1\left(\frac{1}{3}-\frac{1}{2019}\right)\) 

\(=1\cdot\frac{224}{673}\) 

\(=\frac{224}{673}\)

26 tháng 8 2019

Tính :

a) \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)

\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)

\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)

\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)

\(=7.\frac{3}{35}\)

\(=\frac{3}{5}\)

c) \(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)

\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)

\(=\frac{1}{2}.\frac{2}{75}\)

\(=\frac{1}{75}\)

26 tháng 8 2019

thanks

30 tháng 3 2019

B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301

B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301

30 tháng 3 2019

\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);

\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);

\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).

=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)

=> B=\(\frac{1}{1}-\frac{1}{301}\)

=> B=\(\frac{300}{301}\)

AH
Akai Haruma
Giáo viên
5 tháng 2 2023

Đề không rõ ràng. 5.5,4.4,3.3 là gì vậy bạn?

1 tháng 5 2017

1/-4/10

2/9/5

3/\(\widehat{xOz}\)

1 tháng 5 2017

1)1/4

2) 9/5

3) k thấy hình nên k trả lời