\(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Bài làm:

Bài 1:

a)\(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)

= 4.5 + 14 : 7

= 20 + 2

= 22

b)\(36:\sqrt{2.3^2.18}-\sqrt{169}\)

= 36 : 18 - 14

= 2 - 14

= - 12

c)\(\sqrt{\sqrt{81}}\) = \(\sqrt{9}\) = 3

d)\(\sqrt{3^2+4^2}\)

= \(\sqrt{9+16}\)

= \(\sqrt{25}\)

= 5

26 tháng 10 2018

Làm sai rồi

31 tháng 3 2017

a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)

\(=\sqrt{16\cdot25}+\sqrt{196:49}\)

\(=20+2=22\)

b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)

\(=36:\sqrt{324}-\sqrt{169}\)

\(=36:18-13=2-13=-11\)

c) \(\sqrt{\sqrt{81}}\)

\(=\sqrt{9}=3\)

d) \(\sqrt{3^2+4^2}\)

\(=\sqrt{9+16}=\sqrt{25}=5\)

7 tháng 6 2017

a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)

\(=4.5+14:7\)

\(=20+2=22\)

b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)

\(=36:18-13=-11\)

c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)

d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)

21 tháng 12 2017

1. Rút gọn biểu thức:

a) \(\sqrt{\dfrac{81}{25}.\dfrac{49}{16}.\dfrac{9}{196}}=\sqrt{\dfrac{81}{25}}.\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{9}{4.49}}=\dfrac{9}{5}.\dfrac{7}{4}.\dfrac{3}{2.7}=\dfrac{9.3}{5.4.2}=\dfrac{27}{40}\)

b) \(\sqrt{72}-5\sqrt{2}-\sqrt{49.3}+\sqrt{48}+\sqrt{12}=\)

\(=\sqrt{9.4.2}-5\sqrt{2}-\sqrt{49.3}+\sqrt{16.3}+\sqrt{4.3}\)

\(=3.2\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)

\(=6\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)

\(=\sqrt{2}-\sqrt{3}\)

c) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\) \(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|=2-\sqrt{3}+2+\sqrt{3}=4\)

d) \(\sqrt{5}+\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=\)

\(=\sqrt{5}+\sqrt{4.5}-\sqrt{9.5}+3\sqrt{9.2}+\sqrt{9.4.2}\)

\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+3.3\sqrt{2}+3.2\sqrt{2}\)

\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)

\(=15\sqrt{2}\)

22 tháng 12 2017

tks @duy bùi ngọc hà nha

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu

1. Áp dụng quy tắc khai phương một thương, hãy tính: a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\) d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\) 2. Tính: a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) ...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)

d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)

2. Tính:

a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)

c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)

4. Khẳng định nào sau đây là đúng?

A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)

5. Tính.

a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)

6. So sánh

a, So sánh \(\sqrt{144-49}\)\(\sqrt{144}-\sqrt{49}\);

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

3
13 tháng 11 2018

1

a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)

13 tháng 11 2018

tương tự lm nốthehe

13 tháng 12 2018

a)\(\sqrt{25}+2\sqrt{49}=5+2\cdot7=5+14=19\)
b) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{169}:\sqrt{49}=4\cdot5+13:7=20+\dfrac{13}{7}\) = \(\dfrac{153}{7}\)
c) \(\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}=3-\sqrt{7}+\sqrt{7}=3\)
d) \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}\) \(=\sqrt{3}\)