Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)
= \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Vậy A= \(\frac{1}{3000}\)
Mình ko chắc nhen
Xét mẫu:
2999/1 + 2998/2 + 2997/3 + ... + 1/2999
2999 + 2998/2 + 2997/3 + ... + 1/2999
( 1 + 2998/2 ) + ( 1 + 2997/3 ) + ... + ( 1 + 1/2999 ) + 1 [Giải thích nek:chia số tự nhiên 2999 thành 2999 số 1 rồi gộp vào các phân số]
3000/2 + 3000/3 + ... + 3000/2999 + 3000/3000
3000 . ( 1/2 + 1/3 + ... + 1/2999 + 1/3000 )
Giờ thì phần tử và phần trong ngoặc của mẫu đã giống nhau nên loại bỏ
=>N=1/3000
Câu 1:
B = \(\frac{2999}{1}+\frac{2998}{2}+\frac{2997}{3}+...+\frac{1}{2999}\)
= \(\frac{3000-1}{1}+\frac{3000-2}{2}+\frac{3000-3}{3}+...+\frac{3000-2999}{2999}\)
= \(\left(\frac{3000}{1}+\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{2999}\right)-\left(\frac{1}{1}+\frac{2}{2}+\frac{3}{3}+...+\frac{2999}{2999}\right)\)
= \(3000+3000.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)-2999\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2999}\right)+\frac{3000}{3000}\)
= \(3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)
Xét mẫu :
\(\frac{2999}{1}+\frac{2998}{2}+.....+\frac{1}{2999}\)
=\(\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+....+\left(1+\frac{1}{2999}\right)+1\)
=\(\frac{3000}{2}+\frac{3000}{3}+.....+\frac{3000}{2999}+\frac{3000}{3000}\)
=\(3000\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}\right)\)
Thay vào ta có:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{3000}\right)}\)
=\(\frac{1}{3000}\)
a ) 1/x = 1/6 + y/3 = 1/6 + y.2/6 = 1+y.2/6
Để 1+ y.2 / 6 = 1/x thì 1 + y.2 = { 1 ; 2 ; 3 ; 6 }
1+y.2 = 1 => y = 0 <=> x = 6
1 + y.2 = 2 => không tồn tại y
1 + y.2 = 3 => y = 1 <=> x = 2
1 + y. 2 = 6 => không tồn tại y
b ) x/6 - 1/y = 1/2 = 3/6
=> x > 3
x = 4 thì y = 6
x = 5 thì y = 3
x = 6 thì y = 2
a) \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\Leftrightarrow\frac{1}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow x\left(1+2y\right)=6\)\(\Rightarrow x;\left(1+2y\right)\)là cặp ước của 6.
Bạn tự lập bảng và tìm giá trị của x và y.
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\)
\(\Leftrightarrow y\left(x-3\right)=6\)\(\Rightarrow y;\left(x-3\right)\)là cặp ước của 6.
A=\(\frac{1}{3}-\frac{3}{4}-\left(\frac{-3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
=\(\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}\)
=\(\left(\frac{14}{15}+\frac{1}{15}\right)-\left(\frac{35}{36}+\frac{1}{36}\right)+\frac{1}{72}\)
=1 - 1 + \(\frac{1}{72}\)= 0 + \(\frac{1}{72}\)= \(\frac{1}{72}\)