\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\\ A=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\\ A=\dfrac{1}{5}-\dfrac{1}{2009}=\dfrac{2004}{10045}\)

26 tháng 8 2017

\(A=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)

\(=\dfrac{1}{5}-\dfrac{1}{2009}=\dfrac{2004}{10045}.\)

17 tháng 3 2017

D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)

= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)

17 tháng 3 2017

C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)

= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)

= \(\dfrac{10}{5}.\dfrac{502}{2535}\)

= \(\dfrac{1000}{3549}\)

19 tháng 8 2017

Đăng ít thôi.

d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)

\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)

\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{22}{45}\)

\(\Rightarrow D=\dfrac{11}{45}\)

26 tháng 8 2017

Trả lời ít thôi.

T IÊU M Đại số lớp 6

bà cha m ra :v

31 tháng 8 2017

\(a,\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.3.\left[\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left[\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right]=\dfrac{101}{1540}\)

\(\dfrac{1}{3}.\left(\dfrac{1}{5-1}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.\dfrac{1}{3}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{3}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

\(b,1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)

\(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x.\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+x+1-\dfrac{x}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

=>\(x+1=1993\)

\(x=1993-1\)

\(x=1992\)

25 tháng 4 2018

A = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

A=\(\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)

25 tháng 4 2018

B = \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{49.51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

B = \(\dfrac{1}{2}-\dfrac{1}{51}=\dfrac{51}{102}-\dfrac{2}{102}=\dfrac{49}{102}\)

10 tháng 4 2017

a)

<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305

b)

Ôn tập toán 6

10 tháng 4 2017

a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)

\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)

\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}=\dfrac{1}{308}\)

308.1 = (x + 3).1

308 = x + 3

x = 308 - 3

x = 305

5 tháng 7 2018

\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Rightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)

\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

vậy \(x=305\)

5 tháng 7 2018

thanksvui

28 tháng 7 2017

1. x3 - \(\dfrac{4}{25}\)x = 0
<=> x(x2 - \(\dfrac{4}{25}\)) = 0
<=> \(\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{4}{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\end{matrix}\right.\) (thỏa mãn)
Vậy x = 0; 2/5
@Phan Đức Gia Linh

28 tháng 7 2017

1 ) \(x^3-\dfrac{4}{25}x=0\)

\(\Leftrightarrow x\left(x^2-\dfrac{4}{25}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x-\dfrac{2}{5}=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{2}{5}\end{matrix}\right.\)

Vậy .............

2 ) \(3^{4x+4}=9^{x+2}\)

\(\Leftrightarrow3^{4x+4}=\left(3^2\right)^{x+2}\)

\(\Leftrightarrow4x+4=2x+4\)

\(\Leftrightarrow2x=0\Leftrightarrow x=0.\)

3 ) \(3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{97.100}\right)=\dfrac{319}{100}\) ( thiếu đề hay sao )

4 ) \(\left(6-x\right)^{2014}=\left(6-x\right)^{2015}\)

\(\Leftrightarrow\left(6-x\right)^{2014}-\left(6-x\right)^{2015}=0\)

\(\Leftrightarrow\left(6-x\right)^{2014}\left(1-6+x\right)=0\)

\(\Leftrightarrow\left(6-x\right)^{2014}\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(6-x\right)^{2014}=0\\x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=5\end{matrix}\right.\)

Vậy ......

5) \(2+4+6+...+2x=210\)

\(\Leftrightarrow2.1+2.2+2.3+...+2.x=210\)

\(\Leftrightarrow2\left(1+2+3+...+x\right)=210\)

\(\Leftrightarrow1+2+3+...+x=105\)

\(\Leftrightarrow\dfrac{\left(x+1\right).x}{2}=105\)

\(\Leftrightarrow x\left(x+1\right)=210\)

Ta lại có : \(x\left(x+1\right)=14\left(14+1\right)\)

\(\Leftrightarrow x=14\)

Vậy ......

6 ) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+..+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.7}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{2}{2.3.7}+\dfrac{2}{2.4.7}+\dfrac{2}{2.4.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{8.7}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)

\(\Leftrightarrow2\left(\dfrac{1}{6.7}+\dfrac{1}{8.7}+\dfrac{1}{8.9}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{\dfrac{x-1}{x+1}}\right)=\dfrac{2}{9}\)

\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{x+1}=\dfrac{1}{9}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)

\(\Leftrightarrow x=17.\)

Vậy ...........

\(\)

30 tháng 7 2018

Giải:

\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{15}-\dfrac{1}{3\left(x+3\right)}=\dfrac{101}{1540}\)

\(\Leftrightarrow\dfrac{1}{3x+9}=\dfrac{1}{924}\)

\(\Leftrightarrow3x+9=924\)

\(\Leftrightarrow3x=915\)

\(\Leftrightarrow x=305\)

Vậy ...

24 tháng 3 2017

B=1/2. (2/25.27+2/27.29+2/29.31+....+2/73.75) B=1/2. (1/25-1/27+1/27-1/29+1/29-1/31+....+1/73-1/75) B=1/2. (1/25-1/75) B=1/2. 2/75 B=1/75

29 tháng 3 2017

\(3A=\dfrac{3}{8.11}+\dfrac{3}{18.21}+..+\dfrac{3}{197.200}\)