Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+b=9
=>(a+b)^2=81
=>(â-b)^2+4ab=81
=>(a-b)^2=80-4.20
=>(a-b)^2=80-81
=>(a-b)^2=(-1)
mà a<b nên a-b<0
=> a-b = -1
vậy (a-b)^2011 =(-1) ^ 2011=(-1)
Ta có : \(a+b=9\Leftrightarrow a^2+b^2+2ab=81\Rightarrow a^2+b^2+40=81\)
\(\Rightarrow a^2+b^2=41\Rightarrow a^2+b^2-2ab=41-40=1\)
\(\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=-1\left(a< b\right)\)
\(\Rightarrow\left(a-b\right)^{2011}=-1^{2011}=-1\)
ta có: a+b = 9
=> (a+b)2 = 81
a2 + 2ab + b2 = 81
=> a2 - 2ab + b2 + 4ab = 81
(a-b)2 + 4ab = 81
(a-b)2 + 80= 81
(a-b)2 = 1 = 12 = (-1)2
=> a-b = 1 hoặc a-b = -1
=> (a-b)2015 = 12015 = 1
(a-b)2015 = (-1)2015 = -1
KL:...
a + b = 9 => ( a + b )2 = 81
=> a2 + 2ab + b2 = 81
=> a2 + 2.20 + b2 = 81
=> a2 + b2 + 40 = 81
=> a2 + b2 = 41
Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1
=> ( a - b )2 = 1
=> a - b = { 1; -1 }
mà a > b => a - b = 1
=> ( a - b )2015 = 12015 = 1
Vậy,......
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
Nếu a hoặc b bằng 0 thì P=2018 dương
Nếu a và b khác 0
Th1 : a , b khác dấu => P dương
Th2 : a , b cùng dấu
Vì \(2.a^{2018}.b^{2018}>0\)=> \(a^{2017}+b^{2017}>0\)=> a , b đều dương
Có : \(a^{2017}+b^{2017}=2.a^{2018}.b^{2018}\)
\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(ab\right)^{2019}}}\)\(\Rightarrow ab\le1\)
\(\Rightarrow2018-2018ab\ge2018-2018=0\)
Dấu "=" xảy ra khi a=b=1
Vậy P luôn ko âm :)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4\cdot20=1\)
\(\Rightarrow a-b=-1\) ( do \(a< b\) )
\(\Rightarrow\left(a-b\right)^{2017}=-1\)
\(a+b+c=1\Rightarrow\left(a+b+c\right)^3=1\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(Do \(a^3+b^3+c^3=1\))
* Nếu a + b = 0 suy ra c = 1 và b = -a suy ra \(a^5+b^5+c^5=a^5+\left(-a\right)^5+1^5=1\)
Tương tự với b + c = 0 và c + a = 0 ta cũng được\(a^5+b^5+c^5=1\)
\(a+b=9\Rightarrow\left(a+b\right)^2=81\)
\(\Leftrightarrow\left(a-b\right)^2+4ab=81\)
\(\Leftrightarrow\left(a-b\right)^2=81-4.20=1\)
\(\Rightarrow a-b=-1\)
\(\Rightarrow\left(a-b\right)^{2017}=-1\)