\(^{2017}\) biết a+b=9, ab=20,a < b

mn giúp vs ạ

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2020

\(a+b=9\Rightarrow\left(a+b\right)^2=81\)

\(\Leftrightarrow\left(a-b\right)^2+4ab=81\)

\(\Leftrightarrow\left(a-b\right)^2=81-4.20=1\)

\(\Rightarrow a-b=-1\)

\(\Rightarrow\left(a-b\right)^{2017}=-1\)

ta có a+b=9

=>(a+b)^2=81

=>(â-b)^2+4ab=81

=>(a-b)^2=80-4.20

=>(a-b)^2=80-81

=>(a-b)^2=(-1)

mà a<b nên a-b<0

=> a-b = -1

vậy (a-b)^2011 =(-1) ^ 2011=(-1)

19 tháng 8 2017

Ta có : \(a+b=9\Leftrightarrow a^2+b^2+2ab=81\Rightarrow a^2+b^2+40=81\)

\(\Rightarrow a^2+b^2=41\Rightarrow a^2+b^2-2ab=41-40=1\)

\(\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=-1\left(a< b\right)\)

\(\Rightarrow\left(a-b\right)^{2011}=-1^{2011}=-1\)

10 tháng 10 2018

ta có: a+b = 9

=> (a+b)2 = 81

a2 + 2ab + b2 = 81

=> a2 - 2ab + b2 + 4ab = 81

(a-b)2 + 4ab = 81

(a-b)2 + 80= 81

(a-b)2 = 1 = 12 = (-1)2

=> a-b = 1 hoặc a-b = -1

=> (a-b)2015 = 12015 = 1

(a-b)2015 = (-1)2015 = -1

KL:...

10 tháng 10 2018

a + b = 9 => ( a + b )2 = 81

=> a2 + 2ab + b2 = 81

=> a2 + 2.20 + b2 = 81

=> a2 + b2 + 40 = 81

=> a2 + b2 = 41

Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1

=> ( a - b )2 = 1

=> a - b = { 1; -1 }

mà a > b => a - b = 1

=> ( a - b )2015 = 12015 = 1

Vậy,......

15 tháng 2 2019

a)Ta có: a3 + b3 + c3 = 3abc

=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)

=>Có 2 trường hợp 

a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0 

Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c

=>để (a-b)2 + (b-c)2 + (c-a)2 = 0

=>a=b=c

Thay trường hợp a=b=c vào P

=> (2017 +1)(2017+1)(2017+1)=20183

b)Tương tự a+b+c=0

=> a3 + b3 + c3 = 3abc

=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)

\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

\(A=\frac{3abc}{abc}=3\) Do (a+b3 + c3=3abc thay vào)

30 tháng 4 2018

Nếu a hoặc b bằng 0 thì P=2018 dương

Nếu a và b khác 0 

Th1 : a , b khác dấu => P dương

Th2 : a , b cùng dấu

Vì \(2.a^{2018}.b^{2018}>0\)=> \(a^{2017}+b^{2017}>0\)=> a , b đều dương

Có : \(a^{2017}+b^{2017}=2.a^{2018}.b^{2018}\)

\(\Leftrightarrow2=\frac{1}{a.b^{2018}}+\frac{1}{b.a^{2018}}\ge2\sqrt{\frac{1}{\left(ab\right)^{2019}}}\)\(\Rightarrow ab\le1\)

\(\Rightarrow2018-2018ab\ge2018-2018=0\)

Dấu "=" xảy ra khi a=b=1

 Vậy P luôn ko âm :)

2 tháng 5 2018

còn cách khác không bạn

?

6 tháng 8 2020

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4\cdot20=1\)

\(\Rightarrow a-b=-1\) ( do \(a< b\) )

\(\Rightarrow\left(a-b\right)^{2017}=-1\)

12 tháng 10 2020

\(a+b+c=1\Rightarrow\left(a+b+c\right)^3=1\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=1\Rightarrow3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(Do \(a^3+b^3+c^3=1\))

* Nếu a + b = 0 suy ra c = 1 và b = -a suy ra \(a^5+b^5+c^5=a^5+\left(-a\right)^5+1^5=1\)

Tương tự với b + c = 0 và c + a = 0 ta cũng được\(a^5+b^5+c^5=1\)