Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{27}=\frac{-3}{1-x}\)
\(\Rightarrow\frac{x-1}{27}=\frac{3}{x-1}\)
\(\Rightarrow\left(x-1\right)^2=81\)
\(\Rightarrow x-1=\pm9\)
Làm nốt nhassssso
a: \(\Leftrightarrow\left(\dfrac{19}{9}-\dfrac{15}{2135}\cdot\dfrac{4270}{9}\right):x=\dfrac{2}{3}\cdot\dfrac{21}{40}:\dfrac{1}{5}\)
=>-11/9:x=7/4
=>x=-11/9:7/4=-11/9*4/7=-44/63
b: =>(x-1)^2=81
=>x-1=9 hoặc x-1=-9
=>x=-8 hoặc x=10
Ta có :
\(\frac{222}{333}=\frac{2}{3}\)
\(\frac{2121}{4040}=\frac{21}{40}\)
\(\frac{132132}{660660}=\frac{1}{5}\)
=> \(\frac{222}{333}:\frac{2121}{4040}:\frac{132132}{660660}=\frac{400}{63}\)
Thay vế phải vào ta được :
\(\left(2\frac{1}{9}-\frac{15}{2135}:\frac{9}{4270}\right):x=\frac{400}{63}\)
\(\Rightarrow\left(-\frac{11}{9}\right):x=\frac{400}{63}\)
\(\Rightarrow x=-\frac{11}{9}:\frac{400}{63}\)
\(\Rightarrow x=-\frac{77}{400}\)
Ta có:(2\(\dfrac{1}{9}\)-\(\dfrac{15}{2135}\) :\(\dfrac{9}{4270}\)): x= \(\dfrac{222}{333}\): \(\dfrac{2121}{4040}\): \(\dfrac{132132}{660660}\)
Suy ra (\(\dfrac{19}{9}\)-\(\dfrac{15}{2135}\) . \(\dfrac{4270}{9}\)): x= \(\dfrac{2}{3}\). \(\dfrac{40}{21}\) . 5
Suy ra (\(\dfrac{19}{9}\)-\(\dfrac{10}{3}\)): x=\(\dfrac{400}{63}\)
(\(\dfrac{-11}{9}\)):x =\(\dfrac{400}{63}\)
Suy ra x= (\(\dfrac{-11}{9}\)):\(\dfrac{400}{63}\) Vậy x=\(\dfrac{-77}{400}\)
Ta có: \(\left|x+\frac{1}{2015}\right|\ge0\)
\(\left|x+\frac{2}{2015}\right|\ge0\)
...
\(\left|x+\frac{2016}{2015}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{2015}\right|+\left|x+\frac{2}{2015}\right|+...+\left|x+\frac{2016}{2015}\right|\ge0\)
\(\Rightarrow2017x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{2015}\right|+\left|x+\frac{2}{2015}\right|+...+\left|x+\frac{2016}{2015}\right|=x+\frac{1}{2015}+x+\frac{2}{2015}+...+x+\frac{2016}{2015}=2017x\)
\(\Rightarrow2016x+\left(\frac{1}{2015}+\frac{2}{2015}+...+\frac{2016}{2015}\right)=2017x\)
\(\Rightarrow x=\frac{1+2+...+2016}{2015}\)
Vậy \(x=\frac{1+2+...+2016}{2015}\)
Bạn cần số cụ thể thì tính ra nhé!
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
b) 2016x -1 = y-2015 - |y-2015|
2016x-1= y-2015-y-2015
2016x-1=0
2016x = 1
suy ra x = 0