K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

Bài 1:

1) \(a\left(b-c\right)+b\left(c-a\right)+c\left(a-b\right)\)

\(=ab-ac+bc-ba+ca-cb\)

\(=0\)

2) \(a\left(bz-cy\right)+b\left(cx-az\right)+c\left(ay-bx\right)\)

\(=abz-acy+bcx-baz+cay-cbx\)

\(=0\)

17 tháng 8 2018

Bài 2:

Ta có:

\(\dfrac{x^2+ax+ab+bx}{3bx-a^2-ax+3ab}\)

\(=\dfrac{\left(x^2+bx\right)+\left(ax+ab\right)}{\left(3bx-ax\right)+\left(3ab-a^2\right)}\)

\(=\dfrac{x\left(x+b\right)+a\left(x+b\right)}{x\left(3b-a\right)+a\left(3b-a\right)}\)

\(=\dfrac{\left(x+a\right)\left(x+b\right)}{\left(x+a\right)\left(3b-a\right)}\)

\(=\dfrac{x+b}{3b-a}\)

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)

24 tháng 7 2017

a) Sửa đề: \(\left(ax+by+cx\right)^2+\left(bx-ay\right)^2+\left(cy-bz\right)^2+\left(az-cx\right)^2\)
= a2x2 + b2y2 + c2x2 + 2axby + 2bycz + 2axcz + b2x2 - 2bxay + a2y2 + c2y2 - 2cybz + b2z2 + a2z2 - 2azcx + c2x2
= a2x2 + b2y2 + c2x2 + b2x2 + a2y2 + c2y2 + b2z2 + a2z2 + c2x2
= a2(x2+y2+z2) + b2(x2+y2+z2) + c2(x2+y2+z2)
= (a2+b2+c2)(x2+y2+z2) (đpcm)

b) Đặt x = b; y = c; z = a, ta có:
\(\left(ay+bz+cx\right)^2+\left(az-by\right)^2+\left(bx-cz\right)^2+\left(cy-ax\right)^2\)
= a2y2 + b2z2 + c2x2 + 2aybz + 2bzcx + 2aycx + a2z2 - 2azby + b2y2 + b2x2 - 2bxcz + c2z2 + c2y2 - 2cyax + a2x2
= a2y2 + b2z2 + c2x2 + a2z2 + b2y2 + b2x2 + c2z2 + c2y2 + a2x2
= (a2+b2+c2)(x2+y2+z2)
Thay b = x, c = y, a = z, ta có:
(a2+b2+c2)(x2+y2+z2) = (a2+b2+c2)2 (đpcm)

25 tháng 7 2017

thanks

19 tháng 6 2019

VP=\(A^2X^2+B^2Y^2+C^2Z^2+A^2Y^2+B^2X^2+A^2Z^2+C^2X^2+B^2Z^2+C^2Y^2\)

=\(A^2\left(X^2+Y^2+Z^2\right)+B^2\left(X^2+Y^2+Z^2\right)+C^2\left(X^2+Y^2+Z^2\right)\)

=\(\left(X^2+Y^2+Z^2\right)\left(A^2+B^2+C^2\right)\)

16 tháng 7 2018

Ta có :

\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\)

\(\Leftrightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bx\right)}{c^2}\)

\(\Leftrightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}=\dfrac{abc-acy-bcx-abz-acy-bcx}{a^2+b^2+c^2}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{bz-cy}{a}=0\\\dfrac{cx-az}{b}=0\\\dfrac{ay-bx}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}bz=cy\\cx=az\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)

17 tháng 7 2018

cám ơn bạn nhiều

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

24 tháng 9 2019

Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Sau đó chứng minh tương tự bunhiacopxki