Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
b) Vì AH vuông BC nên góc AHC = 90 độ
Ta có góc HAC + C = 90 độ
=> HAC + 30 = 90
=> HAC = 90 - 30
= 60
Do AD là tia pg của BAC nên
BAD = DAC = HAC: 2 = 30 độ
Ta có HAD + DAC = HAC
=> HAD + 30 = 60
=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ
Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!
Tự vẽ hình
a) Adụng tc tổng 3 góc của 1 tg ta có:
A + B + C = 180 độ
=> 90+60+C = 180
=> C = 30
Giải:
Gọi 3 phần đó là a, b, c
Ta có: \(\frac{a}{5}=\frac{b}{4}=0,3c\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{\frac{1}{0,3}}\Rightarrow\frac{a}{50}=\frac{b}{40}=\frac{c}{3}\) và a + b + c = 480
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{50}=\frac{b}{40}=\frac{c}{3}=\frac{a+b+c}{50+40+3}=\frac{480}{93}=\frac{160}{31}\)
+) \(\frac{a}{50}=\frac{160}{31}\Rightarrow a=\frac{8000}{31}\)
+) \(\frac{b}{40}=\frac{160}{31}\Rightarrow b=\frac{6400}{31}\)
+) \(\frac{c}{3}=\frac{160}{31}\Rightarrow c=\frac{480}{31}\)
Vậy 3 phần đó là \(\frac{8000}{31};\frac{6400}{31};\frac{480}{31}\)
Do \(\frac{14}{2x-10}\) nguyên nên \(2x-10\inƯ\left(14\right)\)
Mà 2x - 10 là số chẵn
\(\Rightarrow2x-10\in\left\{2;-2;14;-14\right\}\)
\(\Rightarrow2x\in\left\{12;8;24;-4\right\}\)
\(\Rightarrow x\in\left\{6;4;12;-2\right\}\)
Vậy \(x\in\left\{6;4;12;-2\right\}\)
A B C M D 1 2
Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)
Giải:
a, ΔABD = ΔACD:
Xét ΔABM và ΔACM có:
+ AB = AC (ΔABC cân tại A)
+ AM là cạnh chung.
+ BM = CM (trung tuyến AM)
=> ΔABM = ΔACM (c - c - c)
=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)
Xét ΔABD và ΔACD có:
+ AB = AC (ΔABC cân tại A)
+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)
+ AD là cạnh chung.
=> ΔABD = ΔACD (c - g - c)
b, ΔBDC cân:
Ta có: ΔABD = ΔACD (câu a)
=> BD = CD (2 cạnh tương ứng)
=> ΔBDC cân tại D.
A B C D M
a) ΔABD=ΔACD
Xét ΔABM và ΔACM ta có:
AB=AC (ΔABC cân tại A)
AM chung
BM=BC (gt)
\(\Rightarrow\)ΔABM = ΔACM (c.c.c)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
Xét ΔABD và ΔACD ta có:
AB=AC (ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (cmt)
AM cạnh chung
\(\Rightarrow\) ΔABD = ΔACD (c.g.c)
b) ΔBDC cân
Vì ΔABD = ΔACD ( theo câu a)
\(\Rightarrow\)BD=DC (2 cạnh tương ứng)
\(\Rightarrow\)ΔBDC cân tại D (đpcm)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
A B C O 1 1
Giải:
Xét \(\Delta BOC\) có: \(\widehat{BOC}+\widehat{B_1}+\widehat{C_1}=180^o\)
\(\Rightarrow\widehat{B_1}+\widehat{C_1}=50^o\left(\widehat{BOC}=130^o\right)\)
\(\Rightarrow2\left(\widehat{B_1}+\widehat{C_1}\right)=100^o\)
\(\Rightarrow2.\widehat{B_1}+2.\widehat{C_1}=100^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)
Xét \(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{BAC}=80^o\)
Vậy \(\widehat{BAC}=80^o\)
\(\frac{1}{32^n}\cdot256^n=2048:2^2\)
\(=>\frac{1}{\left(2^5\right)^n}\cdot\left(2^8\right)^n=2^{10}:2^2\)
\(=>\frac{1}{2^{5n}}\cdot2^{8n}=2^8\)
\(=>2^{3n}=2^8\)
\(=>3n=8\)
\(=>n=\frac{8}{3}\)