\(\in N\)

d) \(\frac{1}{32^n}.256^n=2048:2^2\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

\(\frac{1}{32^n}\cdot256^n=2048:2^2\)

\(=>\frac{1}{\left(2^5\right)^n}\cdot\left(2^8\right)^n=2^{10}:2^2\)

\(=>\frac{1}{2^{5n}}\cdot2^{8n}=2^8\)

\(=>2^{3n}=2^8\)

\(=>3n=8\)

\(=>n=\frac{8}{3}\)

23 tháng 8 2016

hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y 

23 tháng 8 2016

Dễ mà,bn xem lại SBT toán 6 hay là toán 7 í,mk quên rồi,lười quá không buồn đi lấy.haha

29 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)

7 tháng 12 2016

Bài 1:
Giải:

Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)

+) \(\frac{x}{21}=4\Rightarrow x=84\)

+) \(\frac{y}{14}=4\Rightarrow y=56\)

+) \(\frac{z}{15}=4\Rightarrow z=60\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(84;56;60\right)\)

Bài 2:
Giải:

Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)

\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)

\(\Rightarrowđpcm\)
 

7 tháng 12 2016

BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau

BT2 là cũng vậy r ss

 

12 tháng 11 2016

b) Vì AH vuông BC nên góc AHC = 90 độ

Ta có góc HAC + C = 90 độ

=> HAC + 30 = 90

=> HAC = 90 - 30

= 60

Do AD là tia pg của BAC nên

BAD = DAC = HAC: 2 = 30 độ

Ta có HAD + DAC = HAC

=> HAD + 30 = 60

=> HAD = 30 độ. Lại có HAD+ADH=90(t/c g vuông)=>30+ADH=90=>ADH=60độ

Các dấu góc bạn đánh vào nhé! Chỗ nào ko hiểu hỏi mình!

 

12 tháng 11 2016

Tự vẽ hình

a) Adụng tc tổng 3 góc của 1 tg ta có:

A + B + C = 180 độ

=> 90+60+C = 180

=> C = 30

 

30 tháng 11 2016

Giải:

Gọi 3 phần đó là a, b, c

Ta có: \(\frac{a}{5}=\frac{b}{4}=0,3c\Rightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{\frac{1}{0,3}}\Rightarrow\frac{a}{50}=\frac{b}{40}=\frac{c}{3}\) và a + b + c = 480

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{50}=\frac{b}{40}=\frac{c}{3}=\frac{a+b+c}{50+40+3}=\frac{480}{93}=\frac{160}{31}\)

+) \(\frac{a}{50}=\frac{160}{31}\Rightarrow a=\frac{8000}{31}\)

+) \(\frac{b}{40}=\frac{160}{31}\Rightarrow b=\frac{6400}{31}\)

+) \(\frac{c}{3}=\frac{160}{31}\Rightarrow c=\frac{480}{31}\)

Vậy 3 phần đó là \(\frac{8000}{31};\frac{6400}{31};\frac{480}{31}\)
 

26 tháng 10 2016

Do \(\frac{14}{2x-10}\) nguyên nên \(2x-10\inƯ\left(14\right)\)

Mà 2x - 10 là số chẵn

\(\Rightarrow2x-10\in\left\{2;-2;14;-14\right\}\)

\(\Rightarrow2x\in\left\{12;8;24;-4\right\}\)

\(\Rightarrow x\in\left\{6;4;12;-2\right\}\)

Vậy \(x\in\left\{6;4;12;-2\right\}\)

 

30 tháng 10 2019

vi 1+1=2 nen x=2

8 tháng 4 2017

A B C M D 1 2

Câu a tớ chỉnh thế này: \(\Delta ABD=\Delta ACD\)

Giải:

a, ΔABD = ΔACD:

Xét ΔABM và ΔACM có:

+ AB = AC (ΔABC cân tại A)

+ AM là cạnh chung.

+ BM = CM (trung tuyến AM)

=> ΔABM = ΔACM (c - c - c)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc tương ứng)

Xét ΔABD và ΔACD có:

+ AB = AC (ΔABC cân tại A)

+ \(\widehat{A_1}=\widehat{A_2}\) (cmt)

+ AD là cạnh chung.

=> ΔABD = ΔACD (c - g - c)

b, ΔBDC cân:

Ta có: ΔABD = ΔACD (câu a)

=> BD = CD (2 cạnh tương ứng)

=> ΔBDC cân tại D.

8 tháng 4 2017

A B C D M

a) ΔABD=ΔACD

Xét ΔABM và ΔACM ta có:

AB=AC (ΔABC cân tại A)

AM chung

BM=BC (gt)

\(\Rightarrow\)ΔABM = ΔACM (c.c.c)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

Xét ΔABD và ΔACD ta có:

AB=AC (ΔABC cân tại A)

\(\widehat{BAM}=\widehat{CAM}\) (cmt)

AM cạnh chung

\(\Rightarrow\) ΔABD = ΔACD (c.g.c)

b) ΔBDC cân

Vì ΔABD = ΔACD ( theo câu a)

\(\Rightarrow\)BD=DC (2 cạnh tương ứng)

\(\Rightarrow\)ΔBDC cân tại D (đpcm)

18 tháng 9 2016

\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)

\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)

\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)

\(=\left(-\frac{9}{4}\right)^2\)

\(=\frac{81}{16}\)

18 tháng 9 2016

\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)

\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)

\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)

\(=\left(\frac{-9}{4}\right)^2\)

\(=\frac{81}{16}\)

21 tháng 2 2017


A B C O 1 1

Giải:
Xét \(\Delta BOC\) có: \(\widehat{BOC}+\widehat{B_1}+\widehat{C_1}=180^o\)

\(\Rightarrow\widehat{B_1}+\widehat{C_1}=50^o\left(\widehat{BOC}=130^o\right)\)

\(\Rightarrow2\left(\widehat{B_1}+\widehat{C_1}\right)=100^o\)

\(\Rightarrow2.\widehat{B_1}+2.\widehat{C_1}=100^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)

Xét \(\Delta ABC\) có: \(\widehat{BAC}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{BAC}=80^o\)

Vậy \(\widehat{BAC}=80^o\)

22 tháng 2 2017

Cảm ơn bạn nhiều!!!