Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => y+42+2y= -12-14+2y
y+2y-2y = -12-14-42
y= -68
b) => 15+y-5-5y= -12-5y
y-5y+5y= -12-15+5
y = -22
c) => 2y+5-8y+21= -3-5y-2
2y-8y+5y= -3-2-5-21
-y= -31=>y=31
d)=> -13+3y+23= -120+y
3y-y= -120+13-23
2y= -130=>y= -65
e) => -21+32+5y= 16+4y
5y-4y= 16+21-32
y= 5
bài 1
a)y-(-42-2y) = (-12) - 14 +2y
y +42 + 2y = -12 -14 +2y
3y + 42 = -26 +2y
y = -68
b)15-(-y+5)-5y=-(12+5y+2)
15+y-5-5y=-12-5y-2
10-4y=-14-5y
-4y+5y=-14-10=-24
c)2y-(-5+8y-21)=-3-(5y+2)
2y+5-8y+21=-3y-5y-2
-6y+26=-8y-2
-6y+8y=-2-26
2y=-28
y=-28/2=-14
6A6. PHIẾU BÀI TẬP TUẦN 12
Bài 1. Biểu diễn các hiệu sau thành tổng rồi tính:
a) ( ) 23 12−− b) ( ) 43 53−−
c) ( ) ( ) 15 17 − − − d) 14 20 −
Bài 2. Tính nhanh
a) (2354 − 45) − 2354 b) (−2009) −(234 − 2009)
c) (16 + 23) + (153−16 − 23)
Bài 3. Tìm số nguyên x, biết:
a) ( ) 3155x −=−− b) 14 32 26 x − − + = −
c) x + (−31) −(−42) = −45 d) (−12) −(13− x) = −15− (−17).
Bài 4: Tìm x biết:
a, ( ) 2670x −−−= . b, ( ) ( ) 7 5 3 x + = − + − . c, ( ) 11811x −=−− .
d, 30 + (32 − x) =10 . e, x +12 + (−5) = −18 . g, 3− x = −21−(−9) .
Bài 5. Tìm số nguyên x, biết:
a) x − 43 = (35− x) − 48 b) 305− x +14 = 48+ ( x − 23)
c) −( x − 6 +85) = ( x + 51) − 54 d) −(35− x) − (37 − x) = 33− x
Bài 6.Tính tổng đại số sau một cách hợp lí
a) 7 −8 + 9 −10 +11−12 +...+ 2009 − 2010
b) −1− 2 − 3− 4 −...− 2009 − 2010
c) 1− 3− 5 + 7 + 9 −11−13+15 +....+ 2017 − 2019 − 2021+ 2023
Bài 7. Điền số thích hợp vào bảng sau
a 13 5 − 12− 10 − 10 − 12
b 21 3 17 − 10 − 10 − 12−
a + b −8 8
Bài 8. Tính nhanh
a) 215+ 43+ (−215) + (−25) b) (−312) + (−327) + (−28) + 27
c) (134 −167 + 45) − (134 + 45)
Bài 9. So sánh
a) 125 và 125+ (−2) b) −13 và (−13) + 7 c) −15 và (−15) + (−3)
Bài 10. Điền số thích hợp vào bảng sau:
a 3− 7− 8 0
b 8 −16 23 −27
ab−
a−
b−
…………………………….……….Hết………………………………
a) \(\left(x-7\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)
Vậy: x∈{7;-12}
b) \(\left(3x-15\right)\left(6-2x\right)=0\)
⇔\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)
hay \(6\left(x-5\right)\left(3-x\right)=0\)
Vì 6≠0
nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
Vậy: x∈{3;5}
c) \(\left(3x+9\right)\left(4y-8\right)=0\)
⇔\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)
hay \(12\left(x+3\right)\left(y-2\right)=0\)
Vì 12≠0
nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
Vậy: x=-3 và y=2
d) \(\left(2y-16\right)\left(8x-24\right)=0\)
⇔\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)
hay 16(y-8)(x-3)=0
Vì 16≠0
nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)
Vậy: y=8 và x=3
e) \(\left(22-11y\right)\left(9x-18\right)=0\)
⇔\(11\left(2-y\right)9\left(x-2\right)=0\)
hay 99(2-y)(x-2)=0
Vì 99≠0
nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)
Vậy: x=2 và y=2
g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)
⇔7(y+2)*9(x-2)=0
hay 63(y+2)(x-2)=0
Vì 63≠0
nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)
Vậy: y=-2 và x=2
h) xy=3
⇒x,y∈Ư(3)
⇒x,y∈{1;-1;3;-3}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}
i) x*y=-5
⇔x,y∈Ư(-5)
⇔x,y∈{1;-1;5;-5}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)
Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}
k) \(\left(x+4\right)\left(y-5\right)=-3\)
⇔x+4; y-5∈Ư(-3)
⇔x+4; y-5∈{1;3;-3;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)
*Trường hợp 3:
\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
*Trường hợp 4:
\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)
Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}
m) (x-9)(y-5)=-1
⇔x-9; y-5∈Ư(-1)
⇔x-9; y-5∈{1;-1}
*Trường hợp 1:
\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
Vậy: x∈{10;8} và y∈{4;6}
n) x+3⋮x+4
⇔x+4-1⋮x+4
⇔-1⋮x+4
hay x+4∈Ư(-1)
⇔x+4∈{1;-1}
⇔x∈{-3;-5}
Vậy: x∈{-3;-5}
p)(x-5)⋮x+2
⇔x+2-7⋮x+2
hay -7⋮x+2
⇔x+2∈Ư(-7)
⇔x+2∈{1;-1;7;-7}
hay x∈{-1;-3;5;-9}
Vậy: x∈{-1;-3;5;-9}
Bài 2:
a: =6(15-5)=6*10=60
b: =9(-3+23)=9*20=180
c: =11(-10+210)=11*200=2200
d: =125*4+125*4=125*8=1000