\(\frac{x}{5}=\frac{y}{2}\)và   \(x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2020

a) ĐẶT \(\frac{x}{5}=\frac{y}{2}=k;\frac{x}{5}=k\Rightarrow x=5k;\frac{y}{2}=k\Rightarrow y=2k\)

ta có \(x.y=160\)

 thay\(5k.2k=160\)

\(k^2.10=160\)

\(k^2=16\)

\(\Rightarrow k=\pm4\)

do đó

 \(\frac{x}{5}=\pm4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{x}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5.4=20\\x=5.\left(-4\right)=-20\end{cases}}}\)

\(\frac{y}{2}=\pm4\Rightarrow\hept{\begin{cases}\frac{y}{2}=4\\\frac{y}{2}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2.4=8\\y=2.\left(-4\right)=-8\end{cases}}}\)

vậy các x,y thỏa mãn là \(\left\{x=20;y=8\right\}\left\{x=-20;y=-8\right\}\)

16 tháng 4 2020

a) X*Y=160

=>X=160/Y (1)

X/5 =Y/2

=> 2x=5y(tính chất tỉ lệ thức)

=>x=5Y/2 (2)

(1),(2)=> 160/y = 5y/2

=> y=8

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

25 tháng 10 2017

Mình chỉ cần các bạn trả lời 4 câu nhanh nhất mình sẽ k.

30 tháng 7 2019

a)x-3/x+5=5/7 suy ra 7.(x-3) = 5(x+5)

Tương đương : 7x - 21 = 5x + 25

                          7x - 5x = 25 + 21 = 46

                          2x = 46 suy ra : x = 46/2 = 23

 Vậy x = 23

8 tháng 8 2017

bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt

8 tháng 8 2017

thank bn

4 tháng 2 2019

Tớ làm lần lượt nhé.

Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)

\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)

\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)

\(\frac{y-2}{4}=1\Rightarrow y=6\)

\(\frac{z-3}{5}=1\Rightarrow z=3\)

4 tháng 2 2019

\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)

\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)

\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)

\(\Rightarrow x=7\cdot\frac{200}{35}=40\)

\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)

P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.

23 tháng 1 2017

Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\)

=> x = 2k + 1

     y = 4k - 3

     z = 6k + 5

Thay vào biểu thức 5z - 3x - 4y = 50 , ta có :

5z - 3x - 4y = 50

=> 5.(6k + 5) - 3.(2k + 1) - 4.(4k - 3) = 50

=> 30k + 25 - (6k + 3) - (16k - 12) = 50

=> 30k + 25 - 6k - 3 - 16k + 12 = 50

=> (30k - 6k - 16k) + (25 - 3 + 12) = 50

=> 8k + 34 = 50

=> 8k = 16

=> k = 2

=> \(\hept{\begin{cases}x=2k+1=2.2+1=5\\y=4k+3=4.2+3=11\\z=6k+5=6.2+5=17\end{cases}}\)

b) 

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=> x = 2k 

     y = 3k 

     z = 4k

Thay vào biểu thức M , ta có :

\(M=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)