Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2.8x-32\right):\frac{2}{3}=90\)
\(2.8\cdot x-32=90\cdot\frac{2}{3}\)
\(\frac{14}{5}x-32=60\)
\(\frac{14}{5}x=60+32\)
\(\frac{14}{5}x=92\)
\(x=\frac{230}{7}\)
B , c , d tương tự
\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)
\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)
\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)
\(a,\left(\frac{5}{7}+\frac{9}{7}\right)x\frac{21}{28}\)
\(C1:=\frac{14}{7}x\frac{21}{28}=\frac{3}{2}\)
\(C2:=\frac{5}{7}x\frac{21}{28}+\frac{9}{7}x\frac{21}{28}=\frac{15}{28}+\frac{27}{28}=\frac{3}{2}\)
\(b,\frac{4}{5}x\frac{13}{14}+\frac{13}{14}x\frac{1}{5}\)
\(C1:=\frac{26}{35}+\frac{13}{70}=\frac{13}{14}\)
\(C2:=\frac{13}{14}x\left(\frac{4}{5}+\frac{1}{5}\right)=\frac{13}{14}x1=\frac{13}{14}\)
học tốt ~~~
\(a.\left(\frac{6}{11}+\frac{5}{11}\right).\frac{3}{7}=1\cdot\frac{3}{7}=\frac{3}{7}b.\frac{3}{5}\cdot\frac{7}{9}+\frac{3}{5}\cdot\frac{2}{9}=\frac{3}{5}\cdot\left(\frac{7}{9}+\frac{2}{9}\right)=\frac{3}{5}\cdot1=\frac{3}{5}\)
a) \(\left(x+\frac{7}{4}\right)\times\frac{3}{2}=6\)
\(\Leftrightarrow\left(x+\frac{7}{4}\right)=6\div\frac{3}{2}\)
\(\Leftrightarrow x+\frac{7}{4}=4\)
\(\Leftrightarrow x=4-\frac{7}{4}\)
\(\Leftrightarrow x=\frac{9}{4}\)
b) \(x\div\frac{3}{5}+\frac{2}{5}=\frac{9}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{9}{5}-\frac{2}{5}\)
\(\Leftrightarrow x\div\frac{3}{5}=\frac{7}{5}\)
\(\Leftrightarrow x=\frac{7}{5}\times\frac{3}{5}\)
\(\Leftrightarrow x=\frac{21}{25}\)
c) \(\frac{1}{2}\div3+x=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{6}+x=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{5}{3}-\frac{1}{6}\)
\(\Leftrightarrow x=\frac{3}{2}\)
bđt \(\Leftrightarrow\)\(\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)\ge\left(\frac{10}{3}\right)^3abc\) (*)
đặt \(\left(\sqrt{ab};\sqrt{bc};\sqrt{ca}\right)=\left(x;y;z\right)\)\(\Rightarrow\)\(xyz\le\frac{1}{27}\)
(*) \(\Leftrightarrow\)\(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(\frac{10}{3}\right)^3xyz\)
\(VT\ge\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\)
Có \(xy+1\ge10\sqrt[10]{\frac{xy}{9^9}}\)
Tương tự với \(yz+1\)\(;\)\(zx+1\)\(\Rightarrow\)\(VT\ge10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\)
Ta cần CM \(10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\ge\frac{10^3}{3^3}xyz\) đúng với \(xyz\le\frac{1}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\)
Vì a+b+c=1 nên
\(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\)
Từ BĐt Cosi cho 3 số dương ta có:
\(\frac{1}{3}=\frac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
đặt x=abc thì \(0< x\le\frac{1}{27}\)
do đó: \(x+\frac{1}{x}-27-\frac{1}{27}=\frac{\left(27-x\right)\left(1-27x\right)}{27x}\ge0\)
=> \(x+\frac{1}{x}=abc+\frac{1}{abc}\ge27+\frac{1}{27}=\frac{730}{27}\)
Mặt khác: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Nên \(P\ge\frac{730}{27}+10=\frac{1000}{27}=\left(\frac{10}{3}\right)^3\)
Dấu "=" xảy ra khi a=b=c\(=\frac{1}{3}\)
a) \(\frac{3}{5}\times y+\frac{1}{2}:\frac{5}{3}-\frac{5}{4}=\frac{1}{2}\times\frac{1}{3}\)
\(\Rightarrow\frac{3}{5}\times y+\frac{3}{10}-\frac{5}{4}=\frac{1}{6}\)
\(\Rightarrow\frac{3}{5}\times y+\left(-\frac{19}{20}\right)=\frac{1}{6}\)
\(\Rightarrow\frac{3}{5}\times y=\frac{67}{60}\)
\(\Rightarrow y=\frac{67}{36}\)
b) \(\frac{4}{5}:y+\frac{1}{4}\times\frac{1}{6}-\frac{1}{2}=\frac{1}{3}\times\frac{5}{2}\)
\(\Rightarrow\frac{4}{5}:y+\frac{1}{24}-\frac{1}{2}=\frac{5}{6}\)
\(\Rightarrow\frac{4}{5}:y+\left(-\frac{11}{24}\right)=\frac{5}{6}\)
\(\Rightarrow\frac{4}{5}:y=\frac{5}{6}+\frac{11}{24}=\frac{31}{24}\)
\(\Rightarrow y=\frac{4}{5}:\frac{31}{24}=\frac{96}{155}\)
c) \(\frac{3}{5}\times y-\frac{4}{5}:3+\frac{1}{12}=\frac{3}{2}+\frac{1}{5}\)
\(\Rightarrow\frac{3}{5}\times y-\frac{4}{15}+\frac{1}{12}=\frac{17}{10}\)
\(\Rightarrow\frac{3}{5}\times y-\frac{4}{15}=\frac{97}{60}\)
\(\Rightarrow\frac{3}{5}\times y=\frac{113}{60}\)
\(\Rightarrow y=\frac{113}{36}\)
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)