K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

\(x+\left(x+1\right)+....+2003=2003\Leftrightarrow x+\left(x+1\right)+....+2002=0\)

\(\Leftrightarrow\left(2002+x\right)\left(2002-x+1\right)=0\Leftrightarrow\left(2002+x\right)\left(2003-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2002\\x=2003\end{cases}}\)

14 tháng 2 2020

\(\left(x+1\right)+\left(x+3\right)+.....+\left(x+99\right)=0\)

\(\Leftrightarrow45x+\left(1+3+...+99\right)=0\Leftrightarrow45x+\frac{100.45}{2}=0\Leftrightarrow x+50=0\Leftrightarrow x=-50\)

\(a,-12\left(x-5\right)+7\left(3-x\right)=5\)

\(-12x+60+21-7x=5\)

\(-12x-7x=5-60-21\)

\(-19x=-76\Leftrightarrow x=4\)

\(b,30\left(x+2\right)-6\left(x-5\right)-24x=100\)

\(30x+60-6x+30-24x=100\)

\(30x-6x-24x=100-60-30\)

\(0x=10\left(vl\right)\)

Vậy pt vô nghiệm 

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

24 tháng 12 2022

(x+1)+(x+3)+...+(x+99)=0

Tổng các số hạng là: (99+1):2=50 (số hạng)

=> (x+1)+(x+3)+...+(x+99)=0 <=> 50.x+(1+3+5+...+99) = 0

<=> 50.x+\frac{\left(99+1\right).50}{2}=0 <=> 50.x+2500=0 => x=-2500/50=-50

12 tháng 2 2018

a)

Đặt 1 -3 + 5 - 7 + ..... + 2001 - 2003 + 2005

= (1 - 3) + (5 - 7) + ... + (2001 - 2003) + 2005

= -2 x 501 + 2005

= -1002 + 2005

= 1003 

b)

   1-2-3+4+5-6-7+8+.......+1993-1994

=(1-2-3+4)+(5-6-7+8)+........+(1990-1991-1992+1993)-1994

=0+0+........+0-1994

=0-1994

=-1994

c)

1^2 - 2^2 +3^2 -4^2 +...........+99^2-100^2+101^2 
= (1-2)(1+2) + (3-4)(3+4) + (5-6)(5+6) + ....+ (99-100)(99+100) +101^2 
= -3 - 7 - 11 - ....-199 + 101^2 
= 101^2 - (3 + 7 + 11 + ... + 199) 
[ Ta dễ thấy (3 + 7 + 11 + ... + 199) là một cấp số cộng có d=4 và n=50] 
= 101^2 - [(199 + 3).50]/2 
= 5151 k nha

12 tháng 2 2018

1 - 3 + 5 - 7 + ......+ 2001 - 2003 + 2005 

Dãy trên có số số hạng là : 

\(( 2005 - 1 ) : 2 + 1 = 1003\) ( số hạng )

Ta ghép mỗi bộ 2 số vậy có 501 bộ và dư 1 số. 

Ta có : 

1 - 3 + 5 - 7 +...... + 2001 - 2003 + 2005 

= ( 1 - 3 ) + ( 5 - 7 ) +.....+ ( 2001 - 2003 ) + 2005 

=    -2     +     ( -2 ) + .....+    ( -2 ) + 2005 

Dãy trên có 501 số  ( -2 ) 

Vậy tổng là : 

501 . ( -2 ) + 2005 = 1003 

30 tháng 11 2015

cho 1 tick, mình giải chi tiết cho, mình học dạng này rồi, dẽ cực lun, có gì lien hệ nah

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).