\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2018

Đặt \(A=\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)

\(A=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-+\frac{1}{x+3}\right)\)

\(A=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)

\(A=\frac{1}{3}\left(\frac{\left(x+3\right)-5}{5\left(x+3\right)}\right)\)

\(A=\frac{\left(x+3\right)-5}{15\left(x+3\right)}\)

1504 không chia hết cho 3;5 nên ta xét tủ :

x + 3 - 5 = 101 

x + 3 = 106

x = 103

2 tháng 4 2019

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3=305\)

VẬY x = 305

26 tháng 12 2017

a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)

=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)

=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)

=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)

=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)

Mà : A = \(\frac{101}{1540}\)

=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)

=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)

=> 3x + 6 = 924

=> 3(x + 2) = 924

=> x + 2 = 308

=> x = 306

26 tháng 12 2017

a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\)  \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm

2 tháng 4 2016

\(\frac{1}{5.8}+\frac{1}{8.11}+...........+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+............+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+............+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

2 tháng 4 2016

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{x\left(x+3\right)}=\frac{1}{x}-\frac{1}{x+3}\)

VT: 2\(\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}....\frac{1}{x+3}\right)\)

21 tháng 2 2017

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

Vậy x = 305

4 tháng 7 2018

a, \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)+\(\dfrac{3}{11.14}\)+...+\(\dfrac{3}{x\left(x+3\right)}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{11}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{101}{1540}\) : \(\dfrac{1}{3}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{5}\)-\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{308}\)

<=>1(x+3)=308.1

<=>1(x+3)=308

<=> x+3=308:1

<=> x+3=308

<=> x=308-3

<=> x=305

b,1+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{x\left(x+1\right):2}\)=1\(\dfrac{1991}{1993}\)

\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{3984}{1993}\)\(2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{1993}:2\)

\(1-\dfrac{1}{x+1}=\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=1-\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

<=>1(x+1)=1993.1

<=>1(x+1)=1993

<=> x+1=1993 : 1

<=> x+1=1993

<=> x=1993-1

<=> x=1992

28 tháng 11 2018

\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\Rightarrow x=305\)

\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)

\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)

\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)

\(\Rightarrow3x=\frac{45}{4}\cdot8\)

\(\Rightarrow3x=90\Rightarrow x=30\)

\(c)1+2+3+4+...+x=820\)

Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)

Do đó : \(\frac{(1+x)\cdot x}{2}=820\)

\(\Rightarrow(1+x)\cdot x=820\cdot2\)

\(\Rightarrow(1+x)\cdot x=1640\)

\(\Rightarrow(1+x)\cdot x=40\cdot41\)

Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40

Chúc bạn học tốt :3

27 tháng 1 2018

Thôi nhé! ở bên dưới có người làm rồi

27 tháng 1 2018

Phần b có bạn nào biết  làm k vậy?? Ở bên dưới k có