K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

26 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y-5}{7}=\dfrac{z+2}{3}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}\)

\(x+2y=5z\Leftrightarrow x+2y-5z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{2y-10}{14}=\dfrac{5z+10}{15}=\dfrac{x+2y-10-5z-10}{3+14-15}\)

\(=\dfrac{-20}{2}=-10\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=-65\\z=-32\end{matrix}\right.\)

Vậy...

24 tháng 11 2021

\(TH_1:x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\\ \Rightarrow Q=\dfrac{-z}{z}+\dfrac{-x}{x}+\dfrac{-y}{y}=-3\\ TH_2:x+y+z\ne0\\ \Rightarrow\dfrac{3x-2y+z}{x}=\dfrac{3y-2z+x}{y}=\dfrac{3z-2x+y}{z}=\dfrac{2x+2y+2z}{x+y+z}=2\\ \Rightarrow\left\{{}\begin{matrix}3x-2y+z=x\\3y-2z+x=y\\3z-2x+y=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-2y=-z\\2y-2z=-x\\2z-2x=-y\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x-y=-\dfrac{z}{2}\\y-z=-\dfrac{x}{2}\\z-x=-\dfrac{y}{2}\end{matrix}\right.\)

\(\Rightarrow Q=-\dfrac{z}{2}:z-\dfrac{x}{2}:x-\dfrac{y}{2}:y=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)

12 tháng 10 2021

a) Áp dụng t/x dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}=\dfrac{3x}{6}=\dfrac{2z}{-10}=\dfrac{3x-2z}{6+10}=\dfrac{48}{16}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.\left(-5\right)=-15\end{matrix}\right.\)

b) \(\dfrac{x}{10}=\dfrac{y}{-13}=\dfrac{z}{17}=\dfrac{2y}{-26}=\dfrac{3z}{51}=\dfrac{2y-3z}{-26-51}=\dfrac{77}{-77}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-1\right)=-10\\y=\left(-13\right).\left(-1\right)=13\\z=17.\left(-1\right)=-17\end{matrix}\right.\)

12 tháng 10 2021

a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{-5}\Rightarrow\dfrac{3x}{6}=\dfrac{y}{3}=\dfrac{2z}{-10}\)

Áp dụng t/c của DTSBN, ta có: \(\dfrac{3x-2z}{6-\left(-10\right)}=\dfrac{48}{16}=3\)

\(\dfrac{x}{2}=3\Rightarrow x=6\)

\(\dfrac{y}{3}=3\Rightarrow y=9\)

\(\dfrac{z}{-5}=3\Rightarrow z=-15\)

 

22 tháng 10 2021

a. Theo t/c của dãy tỉ số bằng nhau ta có:

x+y+z/2+3+5=40/10=4

=>x=4.2=8

=>y=4.3=12

=>z=4.5=20

 

 

22 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)

Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)

11 tháng 10 2021

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15