Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
1. đề bạn ghi rõ lại giúp mình đc ko r mình giải lại cho
2. Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x^2}{2.3^2}=\dfrac{y^2}{5^2}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\)
\(\dfrac{y}{5}=4\Rightarrow y=20\)
Vậy x=12 và y=20
Kêu người ta giúp mà ói vào mặt người ta vậy à?
Bài 1:
\(M\left(1\right)=a+b+6\)
Mà \(M\left(1\right)=0\)
\(\Rightarrow a+b+6=0\)
\(\Rightarrow a+b=-6\)( * )
\(\Rightarrow2a+2b=-12\) (1)
Ta có: \(M\left(-2\right)=4a-2b+6\)
Mà \(M\left(-2\right)=0\)
\(\Rightarrow4a-2b=-6\)(2)
Lấy (1) cộng (2) ta được:
\(6a=-18\)
\(a=-3\)
Thay a=-3 vào (* ) ta được:
\(b=-3\)
Vậy a=-3 ; b=-3
Bài 2:
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)
\(\Leftrightarrow\left(1-2y\right).x=5.8\)
\(\Leftrightarrow\left(1-2y\right).x=40\)
Vì \(x,y\in Z\Rightarrow1-2y\in Z\)
mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)
Thử từng TH
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
Mình k chép lại đề nha!
Ap dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}=\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{2x+3y-z-4}{2+3-4}=46\)
Suy ra; x-1/2 => x-1=92 => x=93
y-2/3 => y-2=138 => y=140
z-4/4=46 => z-4= 184 => z=188
Vậy x=93
y=140
z=188
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-4}{4}\)
\(\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-4}{4}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{2x-2+3y-6-z+4}{4+9-4}=\dfrac{\left(2x+3y-z\right)-2-6+4}{9}=\dfrac{54}{9}=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=6\Rightarrow x-1=12\Rightarrow x=13\\\dfrac{y-2}{3}=6\Rightarrow y-2=18\Rightarrow y=20\\\dfrac{z-4}{4}=6\Rightarrow z-4=24\Rightarrow z=28\end{matrix}\right.\)
b) áp dụng giống.
\(2\) )
\(B=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{x}{z}\right)\left(1+\dfrac{z}{4}\right)\)
\(B=\dfrac{2y}{x}.\dfrac{x+z}{z}.\dfrac{4+z}{4}\)
\(B=\dfrac{2y\left(x+z\right)\left(4+z\right)}{4xz}\)
\(B=\dfrac{\left(2xy+2yz\right)\left(4+z\right)}{4xz}\)
\(B=\dfrac{8xy+2xyz+8yz+2yz^2}{4xz}\)
Bài 1:
\(A=\dfrac{3-2x}{x-1}>0\)
\(TH_1:\left\{\begin{matrix}3-2x>0\\ x-1>0\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x<\dfrac{3}{2}\\ x>1\end{matrix}\right. \Leftrightarrow 1< x<\dfrac{3}{2}\)
\(TH_2:\left\{\begin{matrix}3-2x<0\\ x-1<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x>\dfrac{3}{2}\\ x<1\end{matrix}\right.\) (loại)
\(A>0\Leftrightarrow1< x< \dfrac{3}{2}\)
Bài 2:
\(x-xy+y-2=3\\ \Leftrightarrow-x\left(y-1\right)+\left(y-1\right)=4\\ \Leftrightarrow\left(y-1\right)\left(x-1\right)=-4\)
Vì \(x,y\in Z\Rightarrow x-1\) và \(y-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau:
Vậy...
Bài 3:
\(B=\dfrac{2x^2-3}{x-1}=\dfrac{2x^2-2-1}{x-1}=\dfrac{2\left(x+1\right)\left(x-1\right)-1}{x-1}=2\left(x+1\right)-\dfrac{1}{x-1}\)
Để B nguyên \(\Leftrightarrow\dfrac{1}{x-1}\) nguyên \(\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\)
Mà \(x\in N\Rightarrow x=2\)
Vậy...