Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) (2x - 6)(x + 2) = 0
=> \(\orbr{\begin{cases}2x-6=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=6\\x=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b) (x2 + 7)(x2 - 25) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x^2-25=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x^2=25\end{cases}}\)
=> x ko có giá trị vì x2 \(\ge\)0 mà x2= -7
hoặc x = \(\pm\)5
\(a, \left(x^2+3\right)\left(3x-6\right)\)
\(\Rightarrow\orbr{\begin{cases}x^2+3=0\\3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2=-3\\3x=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=2\end{cases}}\)
\(a,-12\left(x-5\right)+7\left(3-x\right)=5\)
\(-12x+60+21-7x=5\)
\(-12x-7x=5-60-21\)
\(-19x=-76\Leftrightarrow x=4\)
\(b,30\left(x+2\right)-6\left(x-5\right)-24x=100\)
\(30x+60-6x+30-24x=100\)
\(30x-6x-24x=100-60-30\)
\(0x=10\left(vl\right)\)
Vậy pt vô nghiệm
a) \(\left(x+1\right).\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0-1\\x=3-0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
b) \(\left(x-2\right).\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+2\\2x=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\2x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
c) \(\left(3x+9\right).\left(1-3x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+9=0\\1-3x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=0+9\\3x=1-0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=9\\3x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{3}\\x=\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{3}\end{cases}}\)
-Học Tốt!-
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)