\(\in\) Z, biết:

a, \(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

Bài 2:

Ta có:

+) a + b + c + d = 1

a + c + d = 2

\(\Rightarrow\) b = 1 - 2 = -1

+) a + b + c + d = 1

a + d + b = 3

\(\Rightarrow\) c = 1 - 3 = -2

+) a + b + c + d = 1

a + b + c = 4

\(\Rightarrow\) d = 1 - 4 = -3

+) a + b + c + d = 1

\(\Rightarrow\) a + (-1) + (-2) + (-3) = 1

\(\Rightarrow\) a + \(\left[\text{(-1) + (-2) + (-3) }\right]\) = 1

\(\Rightarrow\) a + (-6) = 1

\(\Rightarrow\) a = 1 - (-6)

\(\Rightarrow\) a = 7

Vậy \(\left\{\begin{matrix}a=7\\b=-1\\c=-2\\d=-3\end{matrix}\right.\)

22 tháng 2 2017

Bài 1:

Trả lời:

a, \(\left|x+2\right|\) - x = 2

\(\left|x+2\right|\) = x + 2

x + 2 \(\ge\) 0

x \(\ge\) -2

Vậy tất cả các x \(\in\) Z mà x \(\ge\) -2 thỏa mãn yêu cầu bài tập.

b, \(\left|x-3\right|\) + x - 3 = 0

\(\left|x-3\right|\) = -x + 3

\(\left|x-3\right|\) = 3 +x

\(\Leftrightarrow\) x - 3 \(\le\) 0

\(\Rightarrow\) x \(\le\) 3

Bài 2:

Trả lời:

a + b + c + d = 1 mà a + c + d = 2 \(\Rightarrow\) b = 1 - 2 = (-1)

a + d + b = 3 \(\Rightarrow\) c = 1 - 3 = (-2)

a + b + c = 4 \(\Rightarrow\) d = 1 - 4 = (-3)

b = (-1); c = (-2); d = (-3) \(\Rightarrow\) a = 1 - (-1) - (-2) - (-3) = 7

Vậy a = 7; b = (-1); c = (-2); d = (-3).

21 tháng 12 2016

a)\(A=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)

Dấu "=" xảy ra khi \(2\le x\le3\)

Vậy \(Min_A=1\) khi \(2\le x\le3\)

b)Ta thấy: \(\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-1\right|-2\ge-2\)

\(\Rightarrow B\ge-2\)

Dấu "=" xảy ra khi \(x=1\)

Vậy \(Min_B=-2\) khi \(x=1\)

c)\(C=\left|x-3\right|+\left|x-4\right|=\left|x-3\right|+\left|4-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-3\right|+\left|4-x\right|\ge\left|x-3+4-x\right|=1\)

Dấu "=" xảy ra khi \(3\le x\le4\)

Vậy \(Min_C=1\) khi \(3\le x\le4\)

d)\(D=\left|x-1\right|+\left|x+5\right|+2=\left|x-1\right|+\left|-\left(x+5\right)\right|+2\)

\(=\left|x-1\right|+\left|-x-5\right|+2\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|-x-5\right|+2\ge\left|x-1+\left(-x\right)-5\right|+2=6+2=8\)

Dấu "=" xảy ra khi \(-5\le x\le1\)

Vậy \(Min_D=8\) khi \(-5\le x\le1\)

 

21 tháng 12 2016

Cảm ơn bạn đã giải giúp mình bài toán này nhé!

Bạn giải cũng na ná cô giáo mình .

 

27 tháng 7 2017

Bài 1: Phá dấu ngoặc rồi tính:

a. \(\left(a+b+c\right)-\left(a-b+c\right)\)

\(=a+b+c-a+b-c\)

\(=\left(a-a\right)+\left(b+b\right)+\left(c-c\right)\)

\(=2b\)

b. \(\left(4x+5y\right)-\left(5x-4y-1\right)\)

\(=4x+5y-5x+4y+1\)

\(=\left(4x-5x\right)+\left(5y+4y\right)+1\)

\(=-x+9y+1\)

28 tháng 7 2017

Bạn ko làm đc câu 2 à? Tiếc quá nhỉ?

5 tháng 12 2019

Bài 1:

\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)

25 tháng 12 2019

a. |x||x| + |+6||+6| = |27|

x + 6 = 27

x = 27 - 6

x = 21

Vậy x = 21

b. |5||−5| . |x||x| = |20|

5 . x = 20

x = 20 : 5

x 4

Vậy x = 4

c. |x| = |−17| và x > 0

|x| = 17

Vì |x| = 17

nên x = -17 hoặc 17

mà x > 0 => x = 17

Vậy x = 17 hoặc x = -17

d. |x||x| = |23||23| và x < 0

|x| = 23

Vì |x| = 23

nên x = 23 hoặc -23

mà x < 0 => x = -23

e. 12 |x||x| < 15

Vì 12 |x| < 15

nên x = {12; 13; 14}

Vậy x € {12; 13; 14}

f. |x| > 3

|x| > 3

nên x = -2; -1; 0; 1; 2;

Vậy x € {-2; -1; 1; 2}

a. A=

{

xZ|3<x7}

A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}

b. B={xZ|3|x|<7}

B = {3; 4; 5; 6}

c. C={xZ||x|>5}

C = {6; 7; 8; 9; ...}

1 tháng 8 2017

1. A = (-2)(-3) - 5.|-5| + 125.\(\left(-\dfrac{1}{5}\right)^2\)
= 6 - 25 + 125.\(\dfrac{1}{25}\)
= -19 + 5
= -14
@Shine Anna

1 tháng 8 2017

Đăng ít thôi

4 tháng 8 2017

a ) \(\left(x+1\right)^2-3\left(x+1\right)^2=-8\)

\(\Leftrightarrow\left(x+1\right)^2.\left(1-3\right)=-8\)

\(\Leftrightarrow-2\left(x+1\right)^2=-8\)

\(\Leftrightarrow\left(x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy .......

b ) \(x^2-7x=4-7\left(x-3\right)\)

\(\Leftrightarrow x^2-7x-4+7x-21=0\)

\(\Leftrightarrow x^2-25=0\)

\(\Leftrightarrow x^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

Vậy ........

c ) \(\left(2x+1\right)^2-3x+3=4-3\left(x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)^2-3\left(x-1\right)+3\left(x-1\right)=4\)

\(\Leftrightarrow\left(2x+1\right)^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=2\\2x+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy......

4 tháng 8 2017

b. x2 - 7x = 4 - 7(x-3)

=> x2 - 7x = 4 - 7x +21

=> x2 - 7x + 7x = 25

=> x2 = 25

=> \(\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

c.

22 tháng 1 2017

4/ Gọi $d = (14n+3;21n+5)$

$\implies d|(14n + 3)$ và $d|(21n + 5)$

$\implies d|[2(21n + 5) - 3(14n + 3)] = 1$

$\implies d = 1$

Vậy $(14n+3;21n+5) = 1$, hay phân số đã cho tối giản

16 tháng 7 2017

a.=\(\dfrac{4^3.9^3.5^44^4.18^2}{4^5.9^5.5^5}\)=\(\dfrac{4^4.9^2.2^2}{4^2.9^2.5}\)=\(\dfrac{4^2.2^2}{5}\)=\(\dfrac{64}{5}\)

16 tháng 7 2017

Bài 2:

a) (2x+1)3 = 27

(2x+1)3 = 33

=> 2x+1 = 3

=> 2x = 2

=> x = 1

20 tháng 2 2017

Bài 1:

\(a.\left(-356+57\right)-\left(27-356\right)=-356+57-27+356=\left(-356+356\right)+\left(57-27\right)=30\) \(b.125.\left(-24+24.225\right)=125.\left(-24+5400\right)=125.\left(-24\right)+125.5400=-3000+675000=672000\)

\(c.26.\left(-125\right)-125.\left(-36\right)=-125.\left(26-36\right)=-125.\left(-10\right)=1250\)

Bài 2:

\(a.\left(2x-4\right)^2=0\)

\(\Rightarrow2x-4=0\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

\(b.\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\)

Để (x+5) chia hết cho (x+3) thì 2 phải chia hết cho (x+3)

\(\Rightarrow x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(x+3=1\Rightarrow x=-2\)

\(x+3=-1\Rightarrow x=-4\)

\(x+3=2\Rightarrow x=-1\)

\(x+3=-2\Rightarrow x=-5\)

Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)

20 tháng 2 2017

Bài 2:

a)\(\left(2x-4\right)^2=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\Leftrightarrow x=2\)

b)\(\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\in Z\)

Suy ra \(2⋮x+3\Rightarrow x+3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Rightarrow x\in\left\{-2;-4;-1;-5\right\}\)

29 tháng 7 2017

b) Ta có :

\(VT=\left(4x-3y+2\right)-\left(3x-4y+2\right)\)

\(=4x-3y+2-3x+4y-2\)

\(=\left(4x-3x\right)-\left(3y-4y\right)+\left(2-2\right)\)

\(=x+y\)

\(VP=\left(2x+2y\right)-\left(x+y\right)=2x+2y-x-y\)

\(=\left(2x-x\right)+\left(2y-y\right)\)

\(=x+y\)

\(\Rightarrow VT=VP\)

\(\Rightarrow\)đpcm