Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
a) -4/5 + 5/2x = -3/10
5/2x = -3/10 + 4/5
5/2x = 1/5
5/2x = 1/2
x = 1/2 : 5/2
x = 1/5
b) 4/3 + 5/8 : x = 1/12
5/8x = 1/12 - 4/3
5/8x = -5/4
5 = -5/4.8x
5 = -10x
5/-10 = x
-1/2 = x
x = -1/2
c) (x - 1/3)(x - 2/5) = 0
x - 1/3 = 0 hoặc x - 2/5 = 0
x = 0 + 1/3 x = 0 + 2/5
x = 1/3 x = 2/5
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
a, để A = \(\dfrac{2}{x+5}\) ϵ Z thì 2 ⋮ x + 5
x + 5 ϵ Ư(2) = { -2; -1; 1; 2)
x ϵ { -7; -6; -4; -3}
b, để B = \(\dfrac{2x-3}{x+1}\) ϵ Z thì 2x - 3 ⋮ x + 1 ⇔ 2(x+1) - 5 ⋮ x + 1
x + 1 ϵ Ư(5) ={ -5; -1; 1; 5)
x ϵ { -6; -2; 0; 4}
a) \(\dfrac{1}{4}+\dfrac{3}{4}:x=-2\)
\(\dfrac{3}{4}:x=-2-\dfrac{1}{4}=\dfrac{-8}{4}-\dfrac{1}{4}\)
\(\dfrac{3}{4}:x=\dfrac{-9}{4}\)
\(x=\dfrac{3}{4}:\dfrac{-9}{4}=\dfrac{3}{4}.\dfrac{-4}{9}\)
\(x=\dfrac{-1}{3}\)
b) \(\dfrac{3}{4}+2.\left(2x-\dfrac{2}{3}\right)=-2\)
\(2.\left(2x-\dfrac{2}{3}\right)=-2-\dfrac{3}{4}=\dfrac{-8}{4}-\dfrac{3}{4}\)
\(2.\left(2x-\dfrac{2}{3}\right)=\dfrac{-11}{4}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{4}:2=\dfrac{-11}{4}.\dfrac{1}{2}\)
\(2x-\dfrac{2}{3}=\dfrac{-11}{8}\)
\(2x=\dfrac{-11}{8}+\dfrac{2}{3}=\dfrac{-33}{24}+\dfrac{16}{24}\)
\(2x=\dfrac{-17}{24}\)
\(x=\dfrac{-17}{24}:2=\dfrac{-17}{24}.\dfrac{1}{2}\)
\(x=\dfrac{-17}{48}\)
c) \(\left(\dfrac{1}{2}+5x\right).\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}+5x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{-1}{2}\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
a, 1/4 + 3/4 : x = -2
3/4 : x = -2 - 1/4
3/4 : x = -9/4
x = 3/4 : -9/4
x = -1/3
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
1a) Để \(\frac{6x+5}{2x+1}\)là số nguyên thì 6x+5 chia hết cho 2x+1
=> (6x+3)+2 chia hết cho 2x+1
=> 2 chia hết cho 2x+1 ( vì 6x+3 chia hết cho 2x+1)
=> 2x+1 thuộc ước của 2={ 1;-1;2;-2}
Với 2x+1=1=> x=0
Với 2x+1=-1=> x=-1
Với 2x+1=...........
Với 2x+1=.......
Vậy x=.............
b) Để \(\frac{3x+9}{x-4}\)là số nguyên thì 3x+9 chia hết cho x-4
=> (3x-12)+21 chia hết x-4
=> 21 chia hết cho x-4 ( vì 3x-12 chia hết cho x-4)
=> x-4 thuộc Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Với x-4=1=> x=5
Với x-4=-1=> x=3
....
....
....
....
...
Vậy x=......
2) \(\left(x+\frac{1}{2}+x+\frac{1}{3}\right)+\left(2x+\frac{1}{3}+2x+\frac{1}{4}\right)=0\)
=> \(6x+\frac{17}{12}=0\)
=> \(x=\frac{0-\frac{17}{12}}{6}=-\frac{89}{12}\)
Đúng rồi