Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐK:5x\ge0\Leftrightarrow x\ge0\\ b,ĐK:3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\\ c,ĐK:5-x\ge0\Leftrightarrow x\le5\\ đ,ĐK:3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\\ f,ĐK:\dfrac{-3}{1+4x}\ge0\Leftrightarrow1+4x< 0\left(-3< 0;1+4x\ne0\right)\\ \Leftrightarrow x< -\dfrac{1}{4}\\ h,ĐK:10+x^2\ge0\Leftrightarrow x\in R\left(10+x^2\ge10>0\right)\)
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
a: ĐKXĐ: \(2x-4>=0\)
=>x>=2
b: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>\(2-x>0\)
=>x<2
c: ĐKXĐ: \(-\dfrac{3}{2-6x}>=0\)
=>\(\dfrac{3}{6x-2}>=0\)
=>\(6x-2>0\)
=>x>1/3
d: ĐKXĐ: \(3x^2+2014>=0\)
=>\(x\in R\)
a: A=x+3+|x-3|
=x+3+3-x(x<=3)
=6
b:\(B=\sqrt{x^2+4x+4}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
=x+2-x=2
c: \(C=\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{x-1}=\dfrac{x-1}{x-1}=1\)
a: =>(x-3)(x+1)=0
=>x=3 hoặc x=-1
b: =>x(x-3)=0
=>x=0 hoặc x=3
c: =>(x-5)(x+1)=0
=>x=5 hoặc x=-1
d: =>5x^2+7x-5x-7=0
=>(5x+7)(x-1)=0
=>x=1 hoặc x=-7/5
e: =>x^2-4=0
=>x=2 hoặc x=-4
h: =>x^2-4x+4-3=0
=>(x-2)^2=3
=>\(x=2\pm\sqrt{3}\)
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)