Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)
Vậy \(x=\dfrac{26}{7}\)
b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(x=3\)
__________________________Chúc bạn học tốt____________________________
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
a)\(5x\left(x-1\right)-\left(1-x\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}5x+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\x=1\end{matrix}\right.\)
b) \(\left(x-3\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x-3+2x+3\right)\left(x-3-2x-3\right)=0\)
\(\Leftrightarrow3x\left(-x-6\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\-x-6=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
c)\(2x\left(x^2-4\right)=0\)
\(\Leftrightarrow2x\left(x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x=0\\x+2=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-2\\x=2\end{matrix}\right.\)
d)\(\left(x-2\right)^2-\left(x-2\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2-3x+2x+6-6=0\)
\(\Leftrightarrow-5x+4=0\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
e)\(x^2+6x-7=0\)
\(\Leftrightarrow x^2-x+7x-7=0\)
\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\)
1. a)\(x^2+x-3x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
a, \(x\left(x-3\right)-x^2+2=0\)
\(\Leftrightarrow x^2-3x-x^2+2=0\\ \Leftrightarrow-3x+2=0\)
\(\Leftrightarrow-3x=-2\\ \Rightarrow x=\frac{2}{3}\)
b, \(x^2-2x+1=0\\ \Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\\ \Leftrightarrow x=1\)
c, x(x-1)-(x+3)(x+4)=5x
\(\Leftrightarrow x^2-x-x^2-4x-3x-12=5x\)
\(\Leftrightarrow x^2-x-x^2-4x-3x-5x=12\\ \Leftrightarrow-13x=12\\ \Rightarrow x=\frac{-12}{13}\)
d, ko có vế phải ạ
e, \(x^2+2x=15\)
\(\Leftrightarrow\left(x^2+2x+1\right)-16=0\\ \Leftrightarrow\left(x+1\right)^2-4^2=0\)
\(\Leftrightarrow\left(x+1-4\right)\left(x+1+4\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
f, \(x^4-5x^3+4x^2=0\)
\(\Leftrightarrow x^4-x^3-4x^3+4x^2=0\\ \Leftrightarrow x^3\left(x-1\right)-4x^2\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-4x^2\right)=0\)
\(\Leftrightarrow\left(x-1\right).x^2\left(x-4\right)=0\)
\(\left[{}\begin{matrix}x^2=0\\x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=4\end{matrix}\right.\)
a,x(x-2)+x-2=0
⇔ (x-2)(x+1)=0
⇔ x=2;x=-1
b,x3+x2+x+1=0
⇔ x2(x+1)+x+1=0
⇔ (x+1)(x2+1)=0
⇔ x=-1