\(\vert\frac32x+\frac12\vert=\vert4x-1\ve...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 giờ trước (11:03)

Bài 3:

a: \(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\cdots\left|x+\frac{1}{2019\cdot2020}\right|=2020x\) (1)

=>2020x>=0

=>x>=0

Phương trình (1) sẽ trở thành:

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+\cdots+x+\frac{1}{2019\cdot2020}=2020x\)

=>\(2020x=2019x+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\right)\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{2019\cdot2020}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{2019}-\frac{1}{2020}\)

=>\(x=1-\frac{1}{2020}=\frac{2019}{2020}\)

b: \(\left|x+\frac{1}{1\cdot3}\right|+\left|x+\frac{1}{3\cdot5}\right|+\cdots+\left|x+\frac{1}{197\cdot199}\right|=100x\) (2)

=>100x>=0

=>x>=0

(2) sẽ trở thành: \(x+\frac{1}{1\cdot3}+x+\frac{1}{3\cdot5}+\cdots+x+\frac{1}{197\cdot199}=100x\)

=>\(100x=99x+\frac12\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\cdots+\frac{2}{197\cdot199}\right)\)

=>\(x=\frac12\left(1-\frac13+\frac13-\frac15+\cdots+\frac{1}{197}-\frac{1}{199}\right)=\frac12\left(1-\frac{1}{199}\right)\)

=>\(x=\frac12\cdot\frac{198}{199}=\frac{99}{199}\)

c: \(\left|x+\frac12\right|+\left|x+\frac16\right|+\left|x+\frac{1}{12}\right|+\cdots+\left|x+\frac{1}{110}\right|=11x\left(3\right)\)

=>11x>=0

=>x>=0

(3) sẽ trở thành:

\(11x=x+\frac12+x+\frac16+\ldots+x+\frac{1}{110}\)

=>\(11x=10x+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdots+\frac{1}{10\cdot11}\)

=>\(x=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\) (nhận)

Bài 2:

a: \(\left|5-\frac23x\right|\ge0\forall x;\left|\frac23y-4\right|\ge0\forall y\)

Do đó: \(\left|5-\frac23x\right|+\left|\frac23y-4\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}5-\frac23x=0\\ \frac23y-4=0\end{cases}\Rightarrow\begin{cases}\frac23x=5\\ \frac23y=4\end{cases}\Rightarrow\begin{cases}x=5:\frac23=\frac{15}{2}\\ y=4:\frac23=6\end{cases}\)

b: \(\left|\frac23-\frac12+\frac34x\right|=\left|\frac34x+\frac16\right|\ge0\forall x\)

\(\left|1,5-\frac34-\frac32y\right|=\left|\frac34-\frac32y\right|\ge0\forall y\)

Do đó: \(\left|\frac34x+\frac16\right|+\left|\frac34-\frac32y\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}\frac34x+\frac16=0\\ \frac34-\frac32y=0\end{cases}\Rightarrow\begin{cases}\frac34x=-\frac16\\ \frac32y=\frac34\end{cases}\Rightarrow\begin{cases}x=-\frac16:\frac34=-\frac16\cdot\frac43=-\frac{4}{18}=-\frac29\\ y=\frac34:\frac32=\frac24=\frac12\end{cases}\)

c: \(\left|x-2020\right|\ge0\forall x;\left|y-2021\right|\ge0\forall y\)

Do đó: \(\left|x-2020\right|+\left|y-2021\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-2020=0\\ y-2021=0\end{cases}\Rightarrow\begin{cases}x=2020\\ y=2021\end{cases}\)

d: \(\left|x-y\right|\ge0\forall x,y\)

\(\left|y+\frac{21}{10}\right|\ge0\forall y\)

Do đó: \(\left|x-y\right|+\left|y+\frac{21}{10}\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x-y=0\\ y+\frac{21}{10}=0\end{cases}\Rightarrow x=y=-\frac{21}{10}\)

Bài 1:

a: \(\left|\frac32x+\frac12\right|=\left|4x-1\right|\)

=>\(\left[\begin{array}{l}4x-1=\frac32x+\frac12\\ 4x-1=-\frac32x-\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}4x-\frac32x=\frac12+1\\ 4x+\frac32x=-\frac12+1\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac52x=\frac32\\ \frac{11}{2}x=\frac12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac32:\frac52=\frac35\\ x=\frac12:\frac{11}{2}=\frac{1}{11}\end{array}\right.\)

b: \(\left|\frac75x+\frac12\right|=\left|\frac43x-\frac14\right|\)

=>\(\left[\begin{array}{l}\frac75x+\frac12=\frac43x-\frac14\\ \frac75x+\frac12=\frac14-\frac43x\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac75x-\frac43x=-\frac14-\frac12\\ \frac75x+\frac43x=\frac14-\frac12\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac{1}{15}x=-\frac34\\ \frac{41}{15}x=-\frac14\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac34:\frac{1}{15}=-\frac34\cdot15=-\frac{45}{4}\\ x=-\frac14:\frac{41}{15}=-\frac14\cdot\frac{15}{41}=-\frac{15}{164}\end{array}\right.\)

c: \(\left|\frac54x-\frac72\right|-\left|\frac58x+\frac35\right|=0\)

=>\(\left|\frac54x-\frac72\right|=\left|\frac58x+\frac35\right|\)

=>\(\left[\begin{array}{l}\frac54x-\frac72=\frac58x+\frac35\\ \frac54x-\frac72=-\frac58x-\frac35\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac54x-\frac58x=\frac35+\frac72\\ \frac54x+\frac58x=-\frac35+\frac72\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac58x=\frac{41}{10}\\ \frac{15}{8}x=\frac{29}{10}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{41}{10}:\frac58=\frac{41}{10}\cdot\frac85=\frac{164}{25}\\ x=\frac{29}{10}:\frac{15}{8}=\frac{29}{10}\cdot\frac{8}{15}=\frac{116}{75}\end{array}\right.\)

d: \(\left|\frac78x+\frac56\right|-\left|\frac12x+5\right|=0\)

=>\(\left|\frac78x+\frac56\right|=\left|\frac12x+5\right|\)

=>\(\left[\begin{array}{l}\frac78x+\frac56=\frac12x+5\\ \frac78x+\frac56=-\frac12x-5\end{array}\right.\Rightarrow\left[\begin{array}{l}\frac78x-\frac12x=5-\frac56\\ \frac78x+\frac12x=-5-\frac56\end{array}\right.\)

=>\(\left[\begin{array}{l}\frac38x=\frac{25}{6}\\ \frac{11}{8}x=-\frac{35}{6}\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac{25}{6}:\frac38=\frac{25}{6}\cdot\frac83=\frac{200}{18}=\frac{100}{9}\\ x=-\frac{35}{6}:\frac{11}{8}=-\frac{35}{6}\cdot\frac{8}{11}=-\frac{140}{33}\end{array}\right.\)

lI dau la lI

23 tháng 4 2018

mik bt giải r chờ tí

23 tháng 4 2018

nhanh lên bạn mình cần gấp lém

25 tháng 7 2017

câu 1:

điều kiện để  x2 <x là :

ko có điều kiện nào

8 tháng 10 2019

\(P=\frac{-1}{2}\cdot\frac{5}{9}\cdot x\cdot\frac{-7}{13}\cdot\frac{-3}{5}\\ P=\frac{-7}{78}\cdot x\)

a) Nếu P < 0 thì \(\frac{-7}{78}\text{ và }x\) khác dấu \(\Rightarrow x>0\)

b) Nếu P > 0 thì \(\frac{-7}{78}\text{ và }x\) cùng dấu \(\Rightarrow x< 0\)

c) Nếu P = 0 thì hiển nhiên x = 0

bài 1)
a) \(\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{15}\right) \)
\(\left(\dfrac{5}{42}-x\right)=\dfrac{11}{13}+\dfrac{15}{28}-\dfrac{11}{15}\)
\(x=\dfrac{5}{42}-\dfrac{3541}{5460}=-\dfrac{413}{780}\)
b) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|2,15\right|\)
\(\left|x+\dfrac{4}{15}\right|=-\left|2,15\right|+\left|3,75\right|=1,6\)
\(\Rightarrow x+\dfrac{4}{15}=1,6\) hoặc \(x+\dfrac{4}{15}=-1,6\)
\(\Rightarrow x=\dfrac{4}{3}\) hoặc \(x=-\dfrac{28}{15}\)
c) \(\dfrac{5}{3}-\left|x-\dfrac{3}{2}\right|=-\dfrac{1}{2}\)
\(\Rightarrow\left|x-\dfrac{3}{2}\right|=\dfrac{5}{3}+\dfrac{1}{2}=\dfrac{13}{6}\)
\(\Rightarrow x-\dfrac{3}{2}=\dfrac{13}{6}\) hoặc \(x-\dfrac{3}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=\dfrac{11}{3}\) hoặc \(x=-\dfrac{2}{3}\)
d)\(\left(x-\dfrac{2}{3}\right).\left(2x-\dfrac{3}{2}\right)=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\) hoặc \(2x-\dfrac{3}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
3) a) \(\left(x^{^2}-4\right)^{^2}+\left(x+2\right)^{^2}=0\)
\(\left(x^{^2}-4\right)^{^2}\ge0,\left(x+2\right)^{^2}\ge0\) nên :
\(\left\{{}\begin{matrix}x^{^2}-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=\pm2\)

b) \(\left(x-y\right)^{^2}+\left|y+2\right|=0\)
\(\left\{{}\begin{matrix}\left(x-y\right)^{^2}\ge0\\\left|y+2\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\y=-2\end{matrix}\right.\Rightarrow x=-2;y=-2\)
c) \(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
\(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\) nên \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow y=-\dfrac{9}{25};x=-\dfrac{9}{25}\)
d) \(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=\left(-\dfrac{1}{4}\right)-\left|y\right|\)
\(\Rightarrow\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\)
\(\left\{{}\begin{matrix}\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|\ge0\\\left|y\right|\ge0\end{matrix}\right.\)\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|+\left|y\right|=-\dfrac{1}{4}\) nên không tồn tại x,y thỏa mãn đề bài .

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

5 tháng 7 2017

Bài 2: 

a, 1/3 + 1/2 : x = -4

=> 1/2 : x = -4 - 1/3 

=> 1/2 : x = -13/3

=> x = 1/2 ; -13/3

=> x = -3/26

Vậy x = -3 / 26

5 tháng 7 2017

Bài 2: 

b, x2 - 4x = 0

=> x.(x - 4) =0

=> x=0 hoặc x - 4 = 0

x - 4= 0 => x=4

Vậy x=0 và x=4

17 tháng 5 2019

Có: x:y:z=2:3:5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k.5k.3k=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

=> x=...

y=...

z=...

17 tháng 5 2019

Có: VT\(\ge0\)( tự xét )

Theo bài ra lại có: VT\(\le0\)

=> VT=0

\(\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.............\\x_mp=y_mq\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x_1}{y_1}=\frac{q}{p}\\...............\\\frac{x_m}{y_m}=\frac{q}{p}\end{cases}}\)

\(\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=.....=\frac{x_m}{y_m}=\frac{q}{p}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

........................................................................

những bài khác chốc về làm nốt cho