Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b=c/d
Áp dụng t/c dãy tỉ số bằng nhau:
a/b=c/d=(a+c)/(b+d)
=>(a/b)2009=(c/d)2009=(a+c)2009/(b+d)2009(1)
a/b=c/d => (a/b)2009=(c/d)2009
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
(a/b)2009=(c/d)2009=a2009/b2009=c2009/d2009=(a2009+c2009)/(b2009+d2009)(2)
Từ (1)(2)=>....................
Vì \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^{2009}}{b^{2009}}=\frac{c^{2009}}{d^{2009}}=\left(\frac{a}{b}\right)^{2009}=\frac{a^{2009}-c^{2009}}{b^{2009}-d^{2009}}\)( áp dụng tc của dãy tỉ số bằng nhau )
Vậy ...
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Ta thấy \(\left\{\begin{matrix}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\\\left|x+y-z\right|\ge0\end{matrix}\right.\ge0\)
\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)
Mà theo đề ra
\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)
\(\Rightarrow\left\{\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2x=1\\y=\frac{2}{5}\\z=x+y\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{2}{5}+\frac{1}{2}=\frac{9}{10}\end{matrix}\right.\)
Vậy \(x=\frac{1}{2}\) y=\(\frac{2}{5}\)và z=\(\frac{9}{10}\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)
\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)
\(2008x+201840=2009x\Rightarrow x=201840\)
p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha
Boul đẹp trai_tán gái đổ 100% sai 100%
Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840
Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi
Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,