Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)
\(\frac{1}{2}-x=\frac{57}{28}\)
\(x=-\frac{43}{28}\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
b, \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow\left(2x-1\right)^2=5^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy ...
a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)
\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)
\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)
\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)
\(\Rightarrow x=-\frac{43}{28}\)
Vậy \(x=-\frac{43}{28}.\)
b) \(\left(2x-1\right)^2-5=20\)
\(\Rightarrow\left(2x-1\right)^2=20+5\)
\(\Rightarrow\left(2x-1\right)^2=25\)
\(\Rightarrow2x-1=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{3;-2\right\}.\)
d) \(\frac{x-6}{4}=\frac{4}{x-6}\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)
\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)
\(\Rightarrow\left(x-6\right)^2=16\)
\(\Rightarrow x-6=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{10;2\right\}.\)
Chúc bạn học tốt!
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
Bài 2:
a, 1/3 + 1/2 : x = -4
=> 1/2 : x = -4 - 1/3
=> 1/2 : x = -13/3
=> x = 1/2 ; -13/3
=> x = -3/26
Vậy x = -3 / 26
Bài 2:
b, x2 - 4x = 0
=> x.(x - 4) =0
=> x=0 hoặc x - 4 = 0
x - 4= 0 => x=4
Vậy x=0 và x=4
a) \(\left|2x-3\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=\frac{1}{3}\\2x-3=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{10}{3}\\2x=\frac{8}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)
b) \(\frac{5}{6}-\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{7}{12}\\x+\frac{1}{4}=-\frac{7}{12}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{6}\end{cases}}\)
c) \(3-\left|2x+1,5\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|2x+\frac{3}{2}\right|=\frac{7}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{2}=\frac{7}{4}\\2x+\frac{3}{2}=-\frac{7}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{1}{4}\\2x=-\frac{13}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=-\frac{13}{8}\end{cases}}\)
a. \(\left|2x-3\right|-\frac{1}{3}=0\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=\frac{1}{3}\\2x-3=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{4}{3}\end{cases}}\)
b. \(\frac{5}{6}-\left|x+\frac{1}{4}\right|=\frac{1}{4}\)
\(\Leftrightarrow\left|x+\frac{1}{4}\right|=\frac{7}{12}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\frac{7}{12}\\x+\frac{1}{4}=-\frac{7}{12}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{6}\end{cases}}\)
c. \(3-\left|2x+1,5\right|=\frac{5}{4}\)
\(\Leftrightarrow\left|2x+\frac{3}{2}\right|=\frac{7}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{2}=\frac{7}{4}\\2x+\frac{3}{2}=-\frac{7}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{8}\\x=-\frac{13}{8}\end{cases}}\)