Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 xem lại đề
bài 2 :
4n-5 chia hết cho n-1
=> 4n-4-1 chia hết cho n-1
=> 4(n-1)-1 chia hết cho n-1
=> 4(n-1) chia hết cho n-1 ; -1 chia hết cho n-1
=> n-1 thuộc Ư(-1)={-1,1}
=> n thuộc {0,2}
Ta có :A = 3 + 32 + 33 + 34 + 35 + ... + 3100
3A = 3(3 + 32 + 33 + 34 + ... + 3100)
3A = 32 + 33 + 34 + 35 + ... + 3101
3A - A = (32 + 33 + 34 + 35 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta lại có : 2A + 3 = 3n
hay 3101 - 3 + 3 = 3n
=> 3101 = 3n
=> n = 101
\(A=3+3^2+...+3^{100}\)
\(3A=3^2+3^3+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
Thay 2A vào biểu thức ta có :
\(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy n = 101
Bài giải
a, Ta có : \(\frac{2x+5}{x+2}=\frac{2\left(x+2\right)+1}{x+2}=\frac{2\left(x+2\right)}{x+2}+\frac{1}{x+2}=2+\frac{1}{x+2}\)
\(2x+5\text{ }⋮\text{ }x+2\text{ khi }1\text{ }⋮\text{ }x+2\text{ }\Rightarrow\text{ }x+2\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}x+2=-1\\x+2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }-1\right\}\)
a) \(2\left(x+2\right)+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
b) \(3x+5⋮x-2\)
\(\Leftrightarrow3\left(x-2\right)+11⋮x-2\)
\(\Leftrightarrow11⋮x-2\)
c) \(x^2+3⋮x+4\)
\(\Leftrightarrow\left(x^2-16\right)+19⋮x+4\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)+19⋮x+4\)
\(\Leftrightarrow19⋮x+4\)
P/s : Mình chỉ làm đến bước này thôi, các bước tiếp theo bạn tự làm nhé. Chúc bạn học tốt !
b) 230 và 320
Ta có :
230 = ( 23 )10 = 810
320 = ( 32 )10 = 910
Vì 8 < 9 Nên 230 < 320
c) 1020 và 9010
Ta có :
1020 = ( 102 )10 = 10010
Vì 10010 > 9010
Nên 1020 > 9010
x/3=1/2
x.2=3.1
x.2=3
x=3:2
x=3/2
vậy x=3/2
x/3=9/2
x.2=3.9
x.2=27
x=27:2
x=27/2
vậy x=27/2
a) 5x + 5x + 2 = 650
=> 5x + 5x.52 = 650
=> 5x + 5x.25 = 650
=> 5x.(1 + 25) = 650
=> 5x.26 = 650
=> 5x = 25
=> 5x = 52
=> x = 2
Vậy x = 2
b) (2x + 1)3 = 9.81
=> (2x + 1)3 = 792
=> (2x + 1)3 = 93
=> 2x + 1 = 9
=> 2x = 8
=> x = 4
Vậy x = 4
c) 2x + 2x + 3 = 144
=> 2x + 2x . 23 = 144
=> 2x + 2x.8 = 144
=> 2x .(1 + 8) = 144
=> 2x.9 = 144
=> 2x = 16
=> 2x = 24
=> x = 4
d) x15 = x2
=> x15 - x2 = 0
=> x2.(x13 - 1) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^{13}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=0^2\\x^{13}=1^{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x = 0 hoặc x = 1
e) 32x + 2 = 9x + 3
=> 32(x + 1) = 9x + 3
=> (32)x + 1 = 9x + 3
=> 9x + 1 = 9x + 3
=> 9x + 3 - 9x + 1 = 0
=> 9x . 93 - 9x.9 = 0
=> 9x 729 - 9x . 9 = 0
=> 9x.720 = 0
=> 9x = 0
=> x \(\in\varnothing\)
( x+1) + ( x+2) + (x+3) +....+ (x+99) = 9900
⇔(x+x+x+....+x) + (1+2+3+....+99) = 9900
⇔(x.99) + (1+99).99:2 = 9900
⇔(x.99) + 4950 = 9900
⇔99x = 9900 - 4950
⇔99x = 4950
⇔ x = 50
⇔ x=100
a)\(\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=9900\)
\(\Leftrightarrow99x+1+2+3+...+99=9900\)
\(\Leftrightarrow99x+\left(99+1\right)\left(\frac{99-1}{1}+1\right)=9900\)
\(\Leftrightarrow99x+9900=9900\)
\(\Leftrightarrow99x=9900-9900=0\Rightarrow x=0\)
b)235x:5 dư 2,nên \(x=2;7\left(1\right)\)
Mà \(\overline{235x}⋮3\Leftrightarrow2+3+5+x⋮3\)
\(hay10+x⋮3\)
Mà x là chữ số nên \(10\le10+x\le19\Rightarrow x=2;5;8\left(2\right)\)
Từ (1) và (2) suy ra \(x=2\)