Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{148-x}{25}+\dfrac{169-x}{23}+\dfrac{186-x}{21}+\dfrac{199-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{148-x}{25}-1\right)+\left(\dfrac{169-x}{23}-2\right)+\left(\dfrac{186-x}{21}-3\right)+\left(\dfrac{199-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{123-x}{25}+\dfrac{123-x}{23}+\dfrac{123-x}{21}+\dfrac{123-x}{19}=0\)
\(\Leftrightarrow\left(123-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow123-x=0\Leftrightarrow x=123\)
Vậy x = 123
1)
a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)
\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)
b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)
\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)
c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)
\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)
e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)
\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)
a, \(\dfrac{3}{5}-4.\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{3}\)
\(\Rightarrow4\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{4}{15}\)
\(\Rightarrow\left|\dfrac{1}{5}-\dfrac{3}{4}x\right|=\dfrac{1}{15}\)
\(\Rightarrow\dfrac{1}{5}-\dfrac{3}{4}x\in\left\{-\dfrac{1}{15};\dfrac{1}{15}\right\}\)
\(\Rightarrow\dfrac{3}{4}x\in\left\{\dfrac{4}{15};\dfrac{2}{15}\right\}\Rightarrow x\in\left\{\dfrac{16}{45};\dfrac{8}{45}\right\}\)
b, \(\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{8}-\dfrac{1}{9}\)
(do \(\dfrac{1}{a.\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\) với mọi \(a\in N\)*)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{1}{3}-\dfrac{1}{9}\)
\(\Rightarrow\left|2\dfrac{2}{9}-x\right|=\dfrac{2}{9}\Rightarrow2\dfrac{2}{9}-x\in\left\{-\dfrac{2}{9};\dfrac{2}{9}\right\}\)
\(\Rightarrow x\in\left\{\dfrac{22}{9};2\right\}\)
c,\(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\Rightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(\Rightarrow\dfrac{11}{15}x=\dfrac{2}{5}\Rightarrow x=\dfrac{6}{11}\)
d, \(60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(\Rightarrow\dfrac{3}{5}x+\dfrac{2}{3}x=\dfrac{1}{3}.\dfrac{19}{3}\)
\(\Rightarrow\dfrac{19}{15}x=\dfrac{19}{9}\Rightarrow x=\dfrac{5}{3}\)
Chúc bạn học tốt!!!
a: \(\Leftrightarrow\dfrac{x+1}{2x+1}=\dfrac{x+4}{2x+6}\)
=>(x+1)(2x+6)=(2x+1)(x+4)
\(\Leftrightarrow2x^2+6x+2x+6=2x^2+8x+x+4\)
=>9x+4=8x+6
=>x=2
b: \(x^2+5x=0\)
=>x(x+5)=0
=>x=0 hoặc x=-5
Giải:
a) Theo đề ra, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\) và \(a+b=72\) (Sửa x+y =72)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)
\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)
Vậy ...
b) Theo đề ra, ta có:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\) và \(a+b-c=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)
\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)
\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)
Vậy ...
c) Theo đề ra, ta có:\(\dfrac{12}{x}=\dfrac{3}{y}\) và \(x-y=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)
\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)
\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)
Vậy ...
d) Theo đề ra, ta có:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\) và \(a+b-c=20\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)
Đề câu này sai nhé!
Chúc bạn học tốt!
a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)
c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)
d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)
=> Không thể làm
1,Ta có:\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{57}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\) =\(\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+...+\dfrac{1}{2}\right)\)
= \(\dfrac{9}{10}-\left\{\dfrac{1}{\left(9.10\right)}+\dfrac{1}{\left(9.8\right)}+...+\dfrac{1}{\left(2.1\right)}\right\}\)
= \(\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{1}-\dfrac{1}{2}\right).\left(\dfrac{1}{90}=\dfrac{1}{9.10}=\dfrac{1}{9}-\dfrac{1}{10}\right)\)=\(\dfrac{9}{10}-\left(1-\dfrac{1}{10}\right)\)
=\(\dfrac{9}{10}-\dfrac{9}{10}\)
= 0
Ý 2 dễ rồi bạn tự tính
1, \(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{90}+\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{6}+\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9.10}+\dfrac{1}{8.9}+...+\dfrac{1}{1.2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+...+1-\dfrac{1}{2}\right)\)
\(=\dfrac{9}{10}-\left(\dfrac{-1}{10}+1\right)=\dfrac{9}{10}-\dfrac{9}{10}=0\)
2, \(\dfrac{-5}{11}\cdot\dfrac{13}{17}-\dfrac{5}{11}.\dfrac{4}{17}\)
\(=\dfrac{-5}{11}\cdot\dfrac{13}{17}+\dfrac{-5}{11}.\dfrac{4}{17}\)
\(=\dfrac{-5}{11}\left(\dfrac{13}{17}+\dfrac{4}{17}\right)=\dfrac{-5}{11}.1=\dfrac{-5}{11}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
<=> \(\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
=> x+1=0
<=> x=-1
b) \(\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
<=> \(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
đến đây tương tự a
a) Ta có:
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(Vì:\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
Vậy....
b)Sửa lại đề nha
Ta có:
\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)
\(\Leftrightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)
\(\Leftrightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)
Lý giải tương tự câu a và kết luận nha
a: \(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}-10=0\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
=>2007-x=0
hay x=2007
b: \(\Leftrightarrow x+\left(1+1+1+1+1+1+1\right)+\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)=0\)
\(\Leftrightarrow x+7+\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=0\)
=>x+7+1/3-1/10=0
hay x=-217/30