K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

BÀI 1:

A)  ta có: P + Q = ( ab -a +1) + ( 2ab - ( ab - a + 2) )

                         = ab -a + 1 + 2ab - ab+ a -2

                         = ( ab - ab) + ( a-a) + ( 1-2)

                        = 0+ 0 + ( -1)

=> P+Q = -1

ta có: P - Q = ( ab - a + 1) - ( 2ab - ( ab - a + 2 ) )

                    = ab -a + 1 - 2ab + ab - a +2

                   = ( ab + ab) + ( -a + -a ) + ( 1+2)

                 = 2ab + ( -2 a) + 3

=> P - Q = 2ab + ( -2 a) + 3

b) ta có: P +Q = ( a^2 b + 2 a. ab - 3ac ) + ( a^2 b^2 - 2 ab + 3ac )

                      = a^2b + 2a^2b - 3ac + a^2b^2 - 2 ab + 3ac

                     = ( a ^2b + 2 a^2 b) + ( 3ac- 3ac) + a^2 b^2 - 2 ab

                   = 3 a^2 b + 0+ a^2 b^2 - 2 ab

  => P+Q = 3 a^2 b + a^2 b^2 - 2 ab

ta có: P- Q = ( a^2 b + 2a. ab -3 ac) - ( a^2 b^2 - 2ab + 3ac )

                 = ( a^2 b + 2 a^2 b) + ( -3 ac - 3ac) - a ^2 b^2 + 2 ab

                 = 3 a^2 b + ( -6 ac) - a^ 2 b^2 + 2 ab

c) ta có: \(P=\left(\frac{1}{2}ax-2(ax)+3\right)-\left(ax+1\right)\))

\(P=\frac{1}{2}ax-2ax+3-ax-1\)

\(P=\left(\frac{1}{2}ax-2ax-ax\right)+\left(3-1\right)\)

\(P=\frac{-5}{2}ax+2\)

\(Q=\left(\left(ax-2\right)-\left(3-\left(ax-1\right)\right)\right)-4\)

\(Q=\left(ax-2-\left(3-ax+1\right)\right)-4\)

\(Q=\left(ax-2-3+ax+1\right)-4\)

\(Q=ax-2-3+ax+1-4\)

\(Q=\left(ax+ax\right)+\left(1-2-3-4\right)\)

\(Q=2ax+\left(-8\right)\)

xong rồi bn làm tính tổng và hiệu đa thức P và Q nha! chẳng mk ghi ra tốn thời gian lắm

d) \(P=a-\left(b-\left(c-a-b\right)\right)\)

\(P=a-b+c-a-b\)

\(P=\left(a-a\right)+\left(-b-b\right)+c\)

\(P=\left(-2b\right)+c\)

\(Q=b+\left(a+\left(a-b-q\right)\right)\)

\(Q=b+a+a-b-q\)

\(Q=\left(b-b\right)+\left(a+a\right)-q\)

\(Q=2a-q\)

bn tính luôn tổng , hiệu phần d hộ mk nha! xin lỗi bn nha!

8 tháng 3 2018

Thông cảm mk mới lp 6.Nếu giải đc chắc mk khỏi hok lp 6.

Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)

Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý

Giả sử x=0;x=1;x=-1 là 3 giá trị đó.

Ta có:f(0)=a.02+b.0+c=c

f(1)=a.12+b.1+c=a+b+c

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Do đó c=0;a+b+c=0;a-b+c=0

=>a-b=0=>a=b

và a+b=0=>a=b=0

Vậy a=b=c=0

26 tháng 3 2017

Tk mình đi mọi người mình bị âm nè!

Ai tk mình mình tk lại cho

22 tháng 6 2018

\(P\left(x\right)=ax^2+bx+c\)

Suy ra \(P\left(-1\right)=a-b+c=-1\)\(\Rightarrow a-\left(b-c\right)=-1\)(1)

\(P\left(-\frac{1}{3}\right)=\frac{a}{9}-\frac{b}{3}+c=\frac{17}{9}\);  \(P\left(\frac{1}{2}\right)=\frac{a}{4}+\frac{b}{2}+c=\frac{17}{4}\)

\(\Rightarrow\hept{\begin{cases}\frac{a-3b+9c}{9}=\frac{17}{9}\\\frac{a+2b+4c}{4}=\frac{17}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}a-3b+9c=17\\a+2b+4c=17\end{cases}}\)(2)

\(\Rightarrow a-3b+9c=a+2b+4c\Leftrightarrow a-3b+9c-a-2b-4c=0\)

\(\Leftrightarrow-5b+5c=0\Leftrightarrow-5\left(b-c\right)=0\Rightarrow b-c=0\)

Thay b - c = 0 vào (1) ta có: \(a-0=-1\Leftrightarrow a=-1\)

Thay a=-1 vào (2) \(\Rightarrow\hept{\begin{cases}-1-\left(3b-9c\right)=17\\-1+2b+4c=17\end{cases}}\Leftrightarrow\hept{\begin{cases}3b-9c=-18\\2b+4c=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6b-18c=-36\\6b+12c=54\end{cases}}\Rightarrow6b+12c-6b+18c=54+36=90\)

\(\Leftrightarrow30c=90\Leftrightarrow c=3.\)Do \(b-c=0\Leftrightarrow b=c\Rightarrow b=3\)

\(\Rightarrow a+b+c=-1+2.3=5.\)Vậy...........

AH
Akai Haruma
Giáo viên
20 tháng 2 2018

Lời giải:

Ta có: \(\left\{\begin{matrix} P(1)=Q(2)\\ P(-1)=Q(5)\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2+a+4=4-10+b\\ 2-a+4=25-25+b\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -a+b=12\\ a+b=6\end{matrix}\right.\)

\(\Rightarrow 2b=12+6=18\Leftrightarrow b=9\), suy ra \(a=-3\)

b) Theo bài ra ta có:

\(\left\{\begin{matrix} B(0)=4\\ B(1)=3\\ B(-1)=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a.1^2+b.1+c=a+b+c=3\\ a.(-1)^2+b(-1)+c=a-b+c=7\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=-1\\ a-b=3\end{matrix}\right.\)

Cộng 2 PT cuối cho nhau: \(\Rightarrow 2a=-1+3=2\Leftrightarrow a=1\)

\(\Rightarrow b=-2\)

Vậy \((a,b,c)=(1,-2,4)\)

31 tháng 3 2017

a) Vừa nhìn đề biết ngay sai

Sửa đề:

Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)

Giải:

Ta có:

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\)\(P^2\left(-2\right)\ge0\)

Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)

b) Giải:

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)

31 tháng 3 2017

a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c

P(2) = a.\(2^2\)+b.2+c = 4a+2b+c

=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0

<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)

Nếu P(1) = P(2) => P(1).P(2) = 0

Nếu P(1) = -P(2) => P(1).P(2) < 0

Vậy P(1).P(2)\(\le\)0

b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)

Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

30 tháng 4 2020

sai het roi cung oi