Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).
Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:
\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)
\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)
Đa thức `A(x)` sau khi bỏ dấu ngoặc:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Với `n = 2 . 2004 + 2 . 2005 = 8018`
Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc
Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)
\(=0^{2004}.8^{2005}=0\)
Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`
sau khi bỏ dấu ngoặc (thực hiện phép nhân) ta sẽ được đa thức
P(x)=anx n+an-1x n-1+...+a1x+a0 (với n=2(100+1000)=2200
Thay x=1 thì giá trị của đa thức là P(1) đúng bằng tổng các hệ số
an+an-1+....+a1+a0
ta có : P(1)=(1 2 -2.1+2) 100 .(1 1 -3.1+3) 1000=1
Vậy tổng các hệ số là 1
Câu hỏi của Phạm Ngọc Thạch - Toán lớp 7 - Học toán với OnlineMath
Bai 2; x=1 hoac x= -1
Cách làm ạ