Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)
275 và 2433 Ta có: 275 = 14 348 907
2433 = 14 348 907
=> 275 = 2433 ( vì 14 348 907 = 14 348 907 )
Bài 1 :
n \(\in\) {3;4;5}
Bài 2 :
a) A < B
b) 2300 = 4150
Bài 3 :
x \(\in\) {-1; 0 ;1}
ta có a<b<c=>a<c (1)
ta có 11<a mà c<11 =>c<11<a=>c<a (2)
từ (1)&(2)=> a &c mâu thuẫn với nhau vậy a,b,c không tồn tại để thỏa mãn điều kiện trên
tick đúng cho mình đi mình đã làm dùm bạn mòa
Lời giải:
$25< 3^n< 250$
$\Rightarrow 9< 3^n< 729$
$\Rightarrow 3^2< 3^n< 3^6$
$\Rightarrow 2< n< 6$
Vì $n$ là stn nên $n\in\left\{3; 4;5\right\}$ (đều thỏa mãn)
a) \(a^2=9\)
\(a^2=3^2\)
\(\Rightarrow a=3\)
vay \(a=3\)
b) \(\left(a-1\right)^2=16\)
\(\left(a-1\right)^2=4^2\)
\(\Rightarrow a-1=4\)
\(\Rightarrow a=5\)
vay \(a=5\)
c) \(40-5\left(a-3\right)^3=35\)
\(5\left(a-3\right)^3=40-35\)
\(5\left(a-3\right)^3=5\)
\(\left(a-3\right)^3=1\)
\(\left(a-3\right)^3=1^3\)
\(\Rightarrow a-3=1\)
\(\Rightarrow a=4\)
vay \(a=4\)
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$