Bài 1. Tìm số nguyên n sao cho n+6 chia hết cho n+2

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2021

Answer:

Bài 1: 

Để \(n+6⋮n+2\)

\(\Rightarrow n+4+2⋮n+2\)

\(\Rightarrow4⋮n+2\)

\(\Rightarrow n+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{-6;-4;-3;-1;0;2\right\}\)

Bài 2:

Để \(3n+2⋮n+1\)

\(\Rightarrow3n+3-1⋮n+1\)

\(\Rightarrow3\left(n+1\right)-1⋮n+1\)

\(\Rightarrow n+1\inƯ\left(\pm1\right)\)

\(\Rightarrow n\in\left\{-2;0\right\}\)

Bài 3:

\(\left(x-2\right)\left(x+3\right)< 0\)

Trường hợp 1: \(x-2< 0\Rightarrow x< 2\) (1)

Trường hợp 2: \(x+3< 0\Rightarrow x< -3\) (2)

Từ (1) và (2) \(\Rightarrow x< -3\) thì \(\left(x-2\right)\left(x+3\right)< 0\)

Bài 4:

\(\left(4-2x\right)\left(x+3\right)>0\left(x\inℤ\right)\)

Trường hợp 1: \(\hept{\begin{cases}4-2x>0\\x+3>0\end{cases}}\Rightarrow\hept{\begin{cases}-2x>-4\\x>-3\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x>-3\end{cases}}\Rightarrow-3< x< 2\)

Trường hợp 2: \(\hept{\begin{cases}4-2x< 0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}-2x< -4\\x< -3\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x< -3\text{(Vô lí)}\end{cases}}\)

Vậy \(x\in\left\{-2;-1;0;1\right\}\)

27 tháng 3 2015

tui pit pai 2 y a.neu muon pit thi like like like

27 tháng 3 2015

trả lời meo like ùi cũng pít câu like đó à nka

15 tháng 2 2020

Bài 1: Tìm x , biết :

a) ( x -1).(x-2)=0

<x-1=0

|

<x=0+1=1

-<x-2=0

-<x=0+2=2

Vậy x E {1;2}

b) (x-2).(x^2+1)=0

[<x-2=0

[<x=0+2=2

[>x2+1=0

   x2=0-1

   x2=1.(-1)

c) (x+`1).(x^2-4)=0

21 tháng 10 2015

Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.

*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.

*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3) 

=> P = 3k + 1 hoặc 3k + 2

+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại

+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại

Vậy P chỉ có thể = 3

Bài 2: S = 30 + 31 + 32 + ... + 3123

S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)

S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)

S = 30.40 + ... + 3120.40

S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120

Vì tích chứa 10 => S chia hết cho 10.

21 tháng 10 2015

S = 1 + 3 + 32 + ... + 3123

S = ( 1 + 3 + 32 + 3) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )

S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)

S = 1.40 + 34.40 + ... + 3120.40

S = 4.10.(1+34+...+3120) chia hết cho 10

17 tháng 12 2021

Bài 3: 

=>-3<x<2

5 tháng 7 2021

Bài 1 :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)

\(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)

\(\frac{5}{x}=\frac{1+2y}{6}\)

=>  x ( 1+2y ) = 5 . 6 

=> x ( 2y+1 ) = 30 

=> x;2y+1 \(\in\) Ư(30)

vì 2y+1 là số lẻ nên 2y+1 \(\in\) {1;3;5;15;-1;-3;-5;-15}

             Ta có bảng 

2y+113515-1-3-5-15
x301062-30-10-6-2
y0127-1-2-3-8

Vậy các cặp x;y  tìm được là \(\hept{\begin{cases}x=30\\y=0\end{cases};\hept{\begin{cases}x=20\\y=2\end{cases}};\hept{\begin{cases}x=6\\y=2\end{cases};\hept{\begin{cases}x=2\\y=7\end{cases}};}\hept{\begin{cases}x=-30\\y=-1\end{cases};}\hept{\begin{cases}x=-10\\y=-2\end{cases};\hept{\begin{cases}x=-6\\y=-3\end{cases};\hept{\begin{cases}x=-2\\y=-8\end{cases}}}}}\) 

5 tháng 7 2021

Bài 2 , b 

(3n+2) \(⋮\) n-1

=> 3(n-1) + 5 \(⋮\) n-1

Vì 3(n-1) \(⋮\) n-1  => 5 \(⋮\) n-1

hay n-1 \(\in\) Ư(5)= {1;5;-1;-5}

 n \(\in\) {2;6;0;-4}

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

31 tháng 1 2019

zài thế