Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa
1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)
- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)
- Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)
- Ta có bảng giá trị:
\(2n+1\) | \(-1\) | \(1\) | \(-11\) | \(11\) |
\(n\) | \(-1\) | \(0\) | \(-6\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-6,-1,0,5\right\}\)
2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)
- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)
\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
- Ta có bảng giá trị:
\(n+2\) | \(-1\) | \(1\) | \(-29\) | \(29\) |
\(n\) | \(-3\) | \(-1\) | \(-31\) | \(27\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-31,-3,-1,27\right\}\)
3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)
- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) |
\(n\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-7\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)
a, \(\frac{n+5}{n-2}\)=\(\frac{n-2}{n-2}\)+\(\frac{7}{n-2}\)=1+\(\frac{7}{n-2}\)=>7 chia hết cho n-2 => n-2 thuộc ước của 7 = (-1;-7;1;7) . Ta có :
n-2=-7=> n=-5 ; n-2=-1=>n=1;n-2=1=>n=3;n-2=7=>n=9.
vậy n=-5;-1;3;9 thì n+5 chia hết cho n-2
c, \(\frac{n^2+3}{n-1}\)=\(\frac{n^2-1}{n-1}\)+\(\frac{4}{n-1}\)=>4 chia hết cho n-1 .
Đến đây giải tương tự phần a , chúc bạn hóc tốt.
mik ko bt câu 1, 2 chỉ bt câu 3 thôi:
c)
- 3n+7 chia hết cho 2n+1
=> 2.(3n+7) chia hết cho 2n+1
=> 6n+14 chia hết cho 2n+1
- 2n+1 chia hết cho 2n+1
=> 3.(2n +1) chia hết cho 2n+1
=> 6n+3 chia hết cho 2n+1
Do đó: 6n+14 - (6n+3) chia hết cho 2n+1
=> 6n+14 - 6n - 3 chia hết cho 2n+1
=> ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 thuộc Ư (11) = { 1,11 }
Ta có bảng sau:
2n+1 | 1 | 11 |
n | 0 | 5 |
Vậy n thuộc { 0, 5 }
Tìm số nguyên n sao cho
a, [3n+2]chia hết cho[n-1]
b,[3n+24]chia hết cho[n-4]
c,[n2+5]chia hết cho[n+1]
a,3n+2 chia hết cho n-1
=>3n-3+5 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=>5 chia hết cho n-1
=>n-1\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-4,0,2,6}
b,3n+24 chia hết cho n-4
=>3n-12+36 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
Mà 3(n-4) chia hết cho n-4
=>36 chia hết cho n-4
Bạn làm tiếp nha
c,n2+5 chia hết cho n+1
=>n2-1+6 chia hết cho n+1
=>(n-1).(n+1)+6 chia hết cho n+1
Mà (n-1).(n+1) chia hết cho n+1
=>6 chia hết cho n+1
Bạn tự làm tiếp nha
a , \(( -2004 - 2004 - 2004- 2004 ) . (-24) = ( 0 - 2004 - 2004 ) . (-24) = ( -2004 - 2004 ) . ( -24) = 0 . ( -24 ) = 0\)
b, Chia bài làm hai vế
Ta có : \(A = 1 + 2 + ..... + 97 + 98 \)
Dãy trên có số số hạng là :
\((98 -1 ) : 1 + 1 = 98\)
Tổng dãy A là :
\((98 + 1) . 98 : 2 = 4851\)
Ta lại có : \(B = -3 + (-4) + .... + (-99) + (-100)\)
Dãy trên có số số hạng là :
\([(-100) - 1] : 1 + 1 = (-100) \)
Tổng dãy B là :
\([ ( -100) + 1 ] . (-100) : 2 = 4950\)
Tổng dãy trên là :
\(4851 + 4950 =9801 \)
a) ( 3n + 2 ) chia hết cho n - 1
Ta có : 3n + 2 = 3n - 1 + 3
Vì 3n - 1 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư( 3 )
Ư ( 3) = { 1 ; - 1 ; 3 ; -3 }
=> n - 1 thuộc {1 ; -1 ; 3 ; -3 }
Vậy n thuộc { 2 ; 0 ; 4 ; -2 }
b ) ( 3n + 24 ) chia hết cho n - 4
Ta có : 3n + 24 = 3n - 4 + 28
Vì 3n - 4 chia hết cho n - 4
=> 28 chia hết cho n - 4
Xong bạn làm tương tự như câu a nha