Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
a,Gọi ƯCLN(3n+2,4n+5)=d
\(\Rightarrow\)3n+2\(⋮\)d\(\Rightarrow\)12n+8\(⋮\)d
4n+5\(⋮\)d\(\Rightarrow\)12n+15\(⋮\)d
\(\Rightarrow\)12n+15-12n-8\(⋮\)d\(\Rightarrow\)7\(⋮\)d
vậy 2 số trên nguyên tố cùng nhau vì 7 là SNT
Giả sử 3n+2 và 4n+5 cùng chia hết cho số nguyên tố d thì
3n+2 chia hết cho d
4n+5 chia hết cho d
suy ra 3(4n+5) - 4(3n+2) chia hết cho d
suy ra 12n+15-12n-8 chia hết cho d
7 chia hết cho d
d=7
Vậy điều kiện để ƯCLN(3n+2 ,4n+5 ) =1 khi d khác 7
b) tương tự nhé
2. Cho A=(2x-1)-/x+5/
Nếu x<-5 thì A=2x-1+x+5=3x+4
Nếu x \(\le\)-5 thì A=2x-1-x-5=x-6
b) Để A=-10 thì
x\(\ge\)-5 suy ra x-6 = -10 suy ra x=-4 (thỏa mãn)
x>-5 suy ra 3x+4=-10 suy ra 3x=-14 (loại)
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
a)Gọi ƯCLN(3n+5;2n+3)=d
=> 3n+5 chia hết cho d => 2(3n+5) chia hết cho d hay 6n+10 chia hết cho d
=>2n+3 chia hết cho d => 3(2n+3) chia hết cho d=> 6n+9 chia hết cho d
=>6n+10-(6n+9) chia hết cho d
=>1 chia hết cho d hay d=1
Do đó, ƯCLN(3n+5;2n+3)=1
Vậy 3n+5; 2n+3 là hai số nguyên tố cùng nhau
b)Gọi ƯCLN(5n+2;7n+3)=a
=>5n+2 chia hết cho a => 7(5n+2) chia hết cho a=> 35n+14 chia hết cho a
=>7n+3 chia hết cho a =>5(7n+3) chia hết cho a=> 35n+15 chia hết cho a
=> 35n+15-(35n+14) chia hết cho a
=>1 chia hết cho a hay a=1
Do đó, ƯCLN(5n+2;7n+3)=1
Vậy 5n+2 và 7n+3 là hai số nguyên tố cùng nhau
a) Gọi d là ƯCLN(3n+5, 2n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}3n+5⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n+5\right)⋮d\\3\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+10⋮d\\6n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+5,2n+3\right)=1\)
\(\Rightarrow\) 3n+5 và 2n+3 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(5n+2,7n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}5n+2⋮d\\7n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}7\left(5n+2\right)⋮d\\5\left(7n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+14⋮d\\35n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+15\right)-\left(35n+14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(5n+2,7n+3\right)=1\)
\(\Rightarrow\) 5n+2 và 7n+3 là hai số nguyên tố cùng nhau.
a)Gọi UCLN(3n+5;2n+3)=d
Ta có:
[2(3n+5)]-[3(2n+3)] chia hết d
=>[6n+10]-[6n+9] chia hết d
=>1 chia hết d
=>3n+5 và 2n+3 là 2 số nguyên tố cùng nhau
b)Gọi UCLN(5n+2;7n+3)=d
Ta có:
[5(7n+3)]-[7(5n+2)] chia hết d
=>[35n+15]-[35n+14] chia hết d
=>1 chia hết d
=>5n+2 và 7n+3 là hai số nguyên tố cùng nhau
Ta có:2n+1=2(n-2)+5
Vì 2(n-2) chia hết cho n-2
=>5 chia hết cho n-2=>n-2 thuộc ước của 5
Ta có bảng giá trị:
(Đến đây dễ rồi cậu tự tính nhé)
2n+1=2n-4+3=2(n-2)+3
Nhận thấy; 2(n-2) chia hết cho n-2 với mọi n
=> Để 2n+1 chia hết cho n-2 thì 3 phải chia hết cho n-2 => n-2=(-3,-1,1,3)
n-2 | -3 | -1 | 1 | 3 |
n | -1 | 1 | 3 | 5 |
Bài 2 :
a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .
Ta có : 2n + 3 chia hết cho d .
3n + 4 chia hết cho d .
\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .
3n . 2 + 4 . 2 chia hết cho d .
\(\Rightarrow\) 6n + 9 chia hết cho d .
6n + 8 chia hết cho d .
\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .
\(\Rightarrow\) 1 chia hết cho d .
\(\Rightarrow\) d = 1
b)Gọi ƯCLN( 2n+5, 4n+9) là d
Ta có: 2n + 5 \(⋮\)d
4n + 9 \(⋮\)d
\(\Rightarrow\)2n + 5 . 2 \(⋮\)d
4n + 9 . 1 \(⋮\)d
\(\Rightarrow\)4n + 10 \(⋮\)d
4n + 9 \(⋮\) d
\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.