K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

2. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

11 tháng 1 2017

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

11 tháng 1 2017

Tao không biết và tao cũng chẳng quan tâm

7 tháng 12 2016

chứng minh 

số chính phương chia 4 dư 0 hoac 1

A=n^2 (n so tu nhien)

n=2k => A=4k^2 chia het cho 4

n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1

Kết luận số chính phương chia cho 4 chỉ có thể  dư 0 hoặc dư 1

6 tháng 12 2016

4 số liên tiếp có dạng a, a+1 , a+2, a+3

A=a+a+1+a+2+a+3=4a+6 

T/C : "Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1"

\(\frac{A}{4}=\left(\frac{4a+6}{4}\right)=\left(a+1\right)du2\)

18 tháng 4 2017

bai 1 to chiu

18 tháng 4 2017

bai 1 : M = 147*k (với k tự nhiên nào đó) = 3*49*k Vì M là số chính phương chia hết cho 3 nên phải chia hết cho 9 => k chia hết cho 3 => M = 9*49*k1 = 21^2*k1 = k2^2 (M là bình phương của k2) Do M có 4 chữ số nên 3 < k1 < 23. k1 = k2^2/21^2 = (k2/21)^2 vậy k1 là số chính phương => k1 = 4, 9, 16 => M = 441*k1 = 1764, 3969, 7056