Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn thức |
Đơn thức thu gọn |
Bậc của biến x | Bậc của đơn thức | hệ số |
23zxy(3xy) | 24zx2y2 | 2 | 5 |
24 |
4y2x2(-1/2xy2z)2 | -x4y6z2 | 4 | 12 | -1 |
3(2y)(3y2)(xy)(x2y2) | 18y6x3 | 3 | 9 | 18 |
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
Các câu 1,2,3,4 thì dễ rồi, mình giải câu 5&6 thôi nhé
5 a)Có \(-x^2\le0\forall x\)
\(\Rightarrow-x^2-16< 0\forall x\)
Vậy đa thức ... k có nghiệm với mọi x
b) \(3\left(x-1\right)^2+12\)
\(=3x^2-1+12\)
\(=3x^2+11\)
Vì \(3x^2\ge0\forall x\Rightarrow3x^2+11>0\forall x\)
Vậy đa thức ... không có nghiệm
c)\(x^2+2x+2\)
\(=xx+1x+1x+1+1\)
\(=x\left(x+1\right)+1\left(x+1\right)+1\)
\(=\left(x+1\right)\left(x+1\right)+1\)
\(=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1>0\forall x\)
Vậy đa thức ... vô nghiệm
6)
\(H\left(x\right)=ax^2+bx+c\)
\(H\left(-1\right)=a-b+c\)
\(H\left(-2\right)=4a-2b+c\)
\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)
\(H\left(-1\right)+H\left(-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b+c=-\left(4a-2b+c\right)\\4a-2b+c=-\left(a-b+c\right)\end{matrix}\right.\)
Vậy \(H\left(-1\right).H\left(-2\right)=\left\{{}\begin{matrix}\left(a-b+c\right).\left(-\left(4a-2b+c\right)\right)\\\left(4a-2b+c\right).\left(-\left(a-b+c\right)\right)\end{matrix}\right.\)
Vì có 1 thừa số âm \(\Rightarrow H\left(-1\right).H\left(-2\right)\le0\)
\(B=3+3^3+3^5+...+3^{101}\)
\(3^2.B=3^3+3^5+3^7+...+3^{103}\)
\(\left(3^2-1\right)B=\left(3^3+3^5+3^7+...+3^{103}\right)-\left(3+3^3+3^5+...+3^{101}\right)\)
\(8B=3^{103}-3\)
\(B=\frac{3^{103}-3}{8}\)
\(c,Chox^4+2x^2=0\)
\(x^2\left(x^2+2\right)=0\)
\(x^2+2=0\)
\(x^2=\left(-2\right)\)
\(x=\sqrt{-2}\)
\(\text{Vậy x = }\sqrt{12}\text{ là nghiệm của đa thức }x^4+2x^2\)
\(d,Chox^2+9x+20=0\)
\(x\left(x+9\right)+20=0\)
\(x\left(x+9\right)+20\left(x+9\right)=0\)
\(\left(20+x\right)+\left(x+9\right)=0\)
\(\Rightarrow\hept{\begin{cases}20+x=0\\x+9=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\x=-9\end{cases}}\)
\(\text{Vậy x = -20; x = -9 là nghiệm của đa thức }x^2+9x+20\)
\(e,Chox^2-x-20=0\)
\(x\left(x-1\right)-20=0\)
\(x\left(x-1\right)-20\left(x-1\right)=0\)
\(\left(x-20\right)\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-20=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=20\\x=1\end{cases}}}\)
\(\text{Vậy x = 20; x = 1 là nghiệm của đa thức }x^2-x-20\)
\(f,Cho2x^2+5x+3=0\)
\(x\left(2x+5\right)+3=0\)
\(x\left(2x+5\right)+3\left(2x+5\right)=0\)
\(\left(x+3\right)\left(2x+5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+3=0\\2x+5=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}}\)
\(\text{Vậy x = -3; x = -5/2 là nghiệm của đa thức }2x^2+5x+3\)