K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Câu 1: ta có:

\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)

=> C=\(\frac{4^{n+1}-4}{3}\) 

b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)

=> D=\(\frac{5^{2001}-1}{4}\)

Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)

=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .

Vậy \(A+1=2^{201}\)

Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)

=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)

Vậy 2B + 3 là một lũy thừa của 3...

Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)

=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)

Vậy C là lũy thừa của 2 có số mũ là 2006

Câu 5: a, Do 3n+2 chia hết cho n-1 hay:

3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;

=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)

b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6 

nên => n thuộc (1,6,-1,-6);

c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1

=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;

n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);

d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1 

=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);

20 tháng 6 2017

thanks nha

30 tháng 8 2020

a, 2n+1 chia hết cho 21=>21 thuộc Ư(2n+1)

=>2n+1 thuộc {1,3,7,21}

2n+113721
n01310

Vậy n thuộc{0,1,3,10}

30 tháng 8 2020

b, n+15 chia hết cho n-3 => n-3+18 chia hết n-3

=>18 chia hết n-3 =>n-3 thuộc Ư(18)

=>18 thuộc B(n-3)=>n-3 thuộc {1,2,3,6,9,18}

 Ta có bảng giá trị sau:

n-312369

18

n45691221

Vậy...

18 tháng 6 2018

a, 4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 5

= ( 4 + \(4^2\) ) + ( \(4^3\) + \(4^4\) ) +... + ( \(4^{59}\) + \(4^{60}\))

= ( 4 + \(4^2\) ) + \(4^3\) . ( 4 + \(4^2\) ) +... + \(4^{59}\). ( 4 + \(4^2\) )

= 20 + \(4^3\) . 20 + ... + \(4^{59}\) . 20

= 20 . ( 1 + \(4^3\) + ... + \(4^{59}\) ) chia hết cho 5

4 + \(4^2\) + \(4^3\) + ... + \(4^{60}\) chia hết cho 21

= ( 4 + \(4^2\) + \(4^3\) ) + ( \(4^4\) + \(4^5\) + \(4^6\) ) + ... + ( \(4^{58}\)+ \(4^{59}\) + \(4^{60}\) )

= ( 4 + \(4^2\) + \(4^3\) ) + \(4^4\) . ( 4 + \(4^2\) + \(4^3\) ) + ... + \(4^{58}\) . ( 4 + \(4^2\) + \(4^3\) )

= 84 + \(4^4\) . 84 + .... + \(4^{58}\) . 84

= 84 . ( 1 + \(4^4\) + ... + \(4^{58}\) ) chia hết cho 21

b, 5 + \(5^2\) + \(5^3\) + ... + \(5^{10}\) chia hết cho 6

= ( 5 + \(5^2\) ) + ( \(5^3\) + \(5^4\) ) + ... + ( \(5^9\) + \(5^{10}\) )

= ( 5 + \(5^2\) ) + \(5^3\) . ( 5 + \(5^2\) ) + ... + \(5^9\) . ( 5 + \(5^2\) )

= 30 + \(5^3\) . 30 + ... + \(5^9\) . 30

= 30 . ( 1 + \(5^3\) + ... + \(5^9\) ) chia hết cho 6

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

26 tháng 3 2017

ai giúp vs

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM