Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng độ giao điểm của y= x^2 và y = 2x + 3 là nghiệm phương trình:
x^2 = 2x + 3 <=> x^2 -2x - 3 = 0 <=> x = 3 hoặc x = -1
Vì giao điểm của 3 đồ thị là điểm thuộc góc phần tư thứ 2 => hoành độ giao điệm x < 0
=> x = 3 loại
x = -1 thỏa mãn
Với x = -1 => y = 1
khi đó: 1 = ( 2m - 3) ( -1) + m - 5
<=> 1 = -2m + 3 + m - 5
<=> m = -3
Làm
Để (d1) và (d2)
a, (d1) và (d2) cắt nhau thì a\(\ne a'\) \(\Leftrightarrow3\ne m-1\Leftrightarrow m\ne4\)
Giả sử A là điểm mà (d1) và (d2) cắt nhau trên Ox thì A(x';0)
\(\Rightarrow\) 0= 3x' -1 \(\Leftrightarrow x'=\frac{1}{3}\)
Thay x' = \(\frac{1}{3}\) và y' =0 vào (d2) ta có:
0=(m-1)\(\frac{1}{3}+2\)
\(\Leftrightarrow m=-5\left(tm\right)\)
Kl:...
b, Giả sử (d1) và (d2) cắt nhau tại B thuộc góc phần tư thứ 1 thì B(x';y') với x',y'>0
\(\Rightarrow y'=3x'-1=\left(m-1\right)x'+2\)
\(\Leftrightarrow x'\left(4-m\right)=3\Leftrightarrow x'=\frac{3}{4-m}\left(v\text{ì}m\ne4\right)\)
\(\Rightarrow y'=\frac{m+5}{4-m}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{4-m}>0\\\frac{m+5}{4-m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m+5>0\end{matrix}\right.\Leftrightarrow-5< m< 4\left(tm\right)\)
Kl:.....
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x+2m+3=2x+1\)
=>\(\left(m-1\right)x-2x=1-2m-3\)
=>\(x\left(m-3\right)=-2m-2\)
=>\(x=\dfrac{-2m-2}{m-3}\)
\(y=2x+1=\dfrac{2\cdot\left(-2m-2\right)}{m-3}+1=\dfrac{-4m-4+m-3}{m-3}=\dfrac{-3m-7}{m-3}\)
Để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ nhất thì
\(\left\{{}\begin{matrix}m-1\ne2\\\dfrac{-2m-2}{m-3}< 0\\\dfrac{-3m-7}{m-3}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\left(5\right)\\\dfrac{m+1}{m-3}>0\left(1\right)\\\dfrac{3m+7}{m-3}< 0\left(2\right)\end{matrix}\right.\)
(1); \(\dfrac{m+1}{m-3}>0\)
TH1: \(\left\{{}\begin{matrix}m+1>0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m>3\end{matrix}\right.\)
=>m>3
TH2: \(\left\{{}\begin{matrix}m+1< 0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m< 3\end{matrix}\right.\)
=>m<-1
Vậy: \(m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\)(3)
(2): \(\dfrac{3m+7}{m-3}< 0\)
TH1: \(\left\{{}\begin{matrix}3m+7>0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{7}{3}\\m< 3\end{matrix}\right.\)
=>\(\dfrac{-7}{3}< m< 3\)
TH2: \(\left\{{}\begin{matrix}3m+7< 0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m< -\dfrac{7}{3}\end{matrix}\right.\)
=>Loại
Vậy: \(-\dfrac{7}{3}< m< 3\)(4)
Từ (3),(4),(5) suy ra \(\left\{{}\begin{matrix}m\ne2\\-\dfrac{7}{3}< m< 3\\m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\\m\in\left(-\dfrac{7}{3};-1\right)\end{matrix}\right.\)
=>\(m\in\left(-\dfrac{7}{3};-1\right)\)
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
Mọi việc quy về giải hệ.
Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).
Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)
Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).
Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).
Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).
-----
Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).
Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).
Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.
a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)
=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 )
=> ( -m - 1 ) . y = -m2 + m + 2
hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)
= m - 2
Với m \(\ne\)-1 => y = m- 2
Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)
b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)
Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha )