\(_x\)+ 2y = 5 và 2x+y = 1 cắt nhau tại một điểm thuộc góc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2020

Hoàng độ giao điểm của y= x^2  và y = 2x + 3 là nghiệm phương trình: 

x^2 = 2x + 3 <=> x^2 -2x - 3 = 0 <=> x = 3 hoặc x = -1 

Vì giao điểm của 3 đồ thị  là điểm thuộc góc phần tư thứ 2 => hoành độ giao điệm x < 0 

=> x = 3 loại 

x = -1 thỏa mãn

Với x = -1 => y = 1 

khi đó: 1 = ( 2m - 3) ( -1) + m - 5 

<=> 1 = -2m + 3 + m - 5

<=> m = -3

20 tháng 8 2020

Làm

Để (d1) và (d2)

a, (d1) và (d2) cắt nhau thì a\(\ne a'\) \(\Leftrightarrow3\ne m-1\Leftrightarrow m\ne4\)

Giả sử A là điểm mà (d1) và (d2) cắt nhau trên Ox thì A(x';0)

\(\Rightarrow\) 0= 3x' -1 \(\Leftrightarrow x'=\frac{1}{3}\)

Thay x' = \(\frac{1}{3}\) và y' =0 vào (d2) ta có:

0=(m-1)\(\frac{1}{3}+2\)

\(\Leftrightarrow m=-5\left(tm\right)\)

Kl:...

b, Giả sử (d1) và (d2) cắt nhau tại B thuộc góc phần tư thứ 1 thì B(x';y') với x',y'>0

\(\Rightarrow y'=3x'-1=\left(m-1\right)x'+2\)

\(\Leftrightarrow x'\left(4-m\right)=3\Leftrightarrow x'=\frac{3}{4-m}\left(v\text{ì}m\ne4\right)\)

\(\Rightarrow y'=\frac{m+5}{4-m}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{3}{4-m}>0\\\frac{m+5}{4-m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\m+5>0\end{matrix}\right.\Leftrightarrow-5< m< 4\left(tm\right)\)

Kl:.....

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x+2m+3=2x+1\)

=>\(\left(m-1\right)x-2x=1-2m-3\)

=>\(x\left(m-3\right)=-2m-2\)

=>\(x=\dfrac{-2m-2}{m-3}\)

\(y=2x+1=\dfrac{2\cdot\left(-2m-2\right)}{m-3}+1=\dfrac{-4m-4+m-3}{m-3}=\dfrac{-3m-7}{m-3}\)

Để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ nhất thì 

\(\left\{{}\begin{matrix}m-1\ne2\\\dfrac{-2m-2}{m-3}< 0\\\dfrac{-3m-7}{m-3}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne2\left(5\right)\\\dfrac{m+1}{m-3}>0\left(1\right)\\\dfrac{3m+7}{m-3}< 0\left(2\right)\end{matrix}\right.\)

(1); \(\dfrac{m+1}{m-3}>0\)

TH1: \(\left\{{}\begin{matrix}m+1>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m>3\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+1< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m< 3\end{matrix}\right.\)

=>m<-1

Vậy: \(m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\)(3)

(2): \(\dfrac{3m+7}{m-3}< 0\)

TH1: \(\left\{{}\begin{matrix}3m+7>0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{7}{3}\\m< 3\end{matrix}\right.\)

=>\(\dfrac{-7}{3}< m< 3\)

TH2: \(\left\{{}\begin{matrix}3m+7< 0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -\dfrac{7}{3}\end{matrix}\right.\)

=>Loại

Vậy: \(-\dfrac{7}{3}< m< 3\)(4)

Từ (3),(4),(5) suy ra \(\left\{{}\begin{matrix}m\ne2\\-\dfrac{7}{3}< m< 3\\m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne2\\m\in\left(-\dfrac{7}{3};-1\right)\end{matrix}\right.\)

=>\(m\in\left(-\dfrac{7}{3};-1\right)\)

5 tháng 11 2015

1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)

=> 7m=5 => m= 5/7

2) y=5x+1-2m  : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5

   y =x - m -4  : Với y =0 => x= m + 4

Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)

=> 2m-1=5m+20 => m=-7

22 tháng 1 2017

Mọi việc quy về giải hệ.

Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).

Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)

Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).

Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).

Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).

-----

Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).

Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).

Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.

3 tháng 4 2020

a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)

=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 ) 

=> ( -m - 1 ) . y = -m2 + m + 2 

hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)

         = m - 2 

Với m \(\ne\)-1 => y = m- 2 

Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)

b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)

Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha )