Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)
=>f(x) lẻ
b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)
\(=f\left(x\right)\)
=>f(x) chẵn
c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)
=>f(x) lẻ
bài 2
f(x) =|...|
ghép g(x) =x^2 -2x-3
và -(x^2 -2x-3)
m<0 vô nghiệm
m=0 2 nghiệm
m=4 3 nghiệm
0<n<4 4 nghiệm
điều kiện : x >-1/2
⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0
ap dụng bất đẳng thức Cauchy ta có:
f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4
⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi
2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)
VẬY ĐÁP ÁN LÀ C
1.
Lấy \(x_1;x_2\in\left(-4;0\right)\)
Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)
Lấy \(x_1;x_2\in\left(3;10\right)\)
Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)
Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)
\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)
2.
Hàm số \(y=mx^2+2x+1\left(P\right)\)
\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)
Vậy \(m=4\)
a, Mệnh đề đúng
\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)
b, Mệnh đề sai
\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)
c, Mệnh đề đúng
\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ
d, Mệnh đề đúng
\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)
Câu 1:
\(\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)
Câu 2:
Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)
Tất cả các đáp án đều sai
Câu 3:
Để pt có 2 nghiệm pb
\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)
\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)
Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta
TH1: x>-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)
=>-6x^2+3x-4x+2=x^2+2x
=>-7x^2-3x+2=0
=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)
TH2: x<-2
Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)
=>6x^2-3x+4x-2=x^2+2x
=>6x^2+x-2=x^2+2x
=>5x^2-x-2=0
mà x<-2
nên \(x\in\varnothing\)