\(\dfrac{x^2+5x+m}{2x^2-3x+2}<7\)∀
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)

=>f(x) lẻ

b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)

\(=f\left(x\right)\)

=>f(x) chẵn

c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)

=>f(x) lẻ

10 tháng 7 2017

bài 2

f(x) =|...|

ghép g(x) =x^2 -2x-3

và -(x^2 -2x-3)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

m<0 vô nghiệm

m=0 2 nghiệm

m=4 3 nghiệm

0<n<4 4 nghiệm

14 tháng 6 2018

điều kiện : x >-1/2

⇒ 2x + 1 >0 ⇒ \(\dfrac{4}{2x+1}\) >0

ap dụng bất đẳng thức Cauchy ta có:

f(x) ≥ \(2\sqrt{\left(2x+1\right).\dfrac{4}{2x+1}}\) = 4

⇒ Min f(x) = 4. Dấu '' = '' xảy ra khi và chỉ khi

2x + 1 = \(\dfrac{4}{2x+1}\) ⇒ (2x +1 )2 = 4 ⇒ x = \(\dfrac{1}{2}\)

VẬY ĐÁP ÁN LÀ C

23 tháng 9 2020

1.

Lấy \(x_1;x_2\in\left(-4;0\right)\)

Ta có: \(y_1-y_2=-2x^2_1-7-\left(-2x^2_2-7\right)=-2\left(x_1-x_2\right)\left(x_1+x_2\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(-4;0\right)\Rightarrow-8< x_1+x_2< 0\Rightarrow I>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(-4;0\right)\)

Lấy \(x_1;x_2\in\left(3;10\right)\)

Xét \(I=\frac{y_1-y_2}{x_1-x_2}=-2\left(x_1+x_2\right)\)

Do \(x_1;x_2\in\left(3;10\right)\Rightarrow6< x_1+x_2< 20\Rightarrow I< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(3;10\right)\)

23 tháng 9 2020

2.

Hàm số \(y=mx^2+2x+1\left(P\right)\)

\(A\left(-1;3\right)\in\left(P\right)\Leftrightarrow3=m-2+1\Leftrightarrow m=4\)

Vậy \(m=4\)

2 tháng 7 2019

a, Mệnh đề đúng

\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)

b, Mệnh đề sai

\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)

c, Mệnh đề đúng

\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ

d, Mệnh đề đúng

\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)

NV
9 tháng 5 2019

Câu 1:

\(\Delta=m^2-4\left(m+3\right)\le0\)

\(\Leftrightarrow m^2-4m-12\le0\Rightarrow-2\le m\le6\)

Câu 2:

Để BPT đã cho vô nghiệm tương đương \(mx^2-4\left(m+1\right)x+m-5\le0\) đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4\le0\end{matrix}\right.\) \(\Leftrightarrow-4\le m\le-\frac{1}{3}\)

Tất cả các đáp án đều sai

Câu 3:

Để pt có 2 nghiệm pb

\(\Leftrightarrow\Delta'=\left(m-2\right)^2+2\left(m-2\right)>0\)

\(\Leftrightarrow m^2-2m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\)

Tiếp tục tất cả các đáp án đều sai, đề bài gì kì vậy ta

16 tháng 11 2022

TH1: x>-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{x+2}\)

=>-6x^2+3x-4x+2=x^2+2x

=>-7x^2-3x+2=0

=>\(x=\dfrac{-3\pm\sqrt{65}}{14}\)

TH2: x<-2

Pt sẽ là \(\dfrac{x}{2x-1}=\dfrac{-3x-2}{-x-2}=\dfrac{3x+2}{x+2}\)

=>6x^2-3x+4x-2=x^2+2x

=>6x^2+x-2=x^2+2x

=>5x^2-x-2=0

mà x<-2

nên \(x\in\varnothing\)