Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)
Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)
b) Ta thấy : \(B=x^2+4x-100\)
\(=\left(x+4\right)^2-104\ge-104\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy \(Min_B=-104\Leftrightarrow x=-4\)
c) Ta thấy : \(C=\frac{4-x}{x-3}\)
\(=\frac{3-x+1}{x-3}\)
\(=-1+\frac{1}{x-3}\)
Để C min \(\Leftrightarrow\frac{1}{x-3}\)min
\(\Leftrightarrow x-3\)max
\(\Leftrightarrow x\)max
Vậy để C min \(\Leftrightarrow\)\(x\)max
p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình
Bài 2 :
a) Ta thấy : \(x^2\ge0\)
\(\left|y+1\right|\ge0\)
\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)
\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)
Dấu " = " xảy ra :
\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)
b) Để B max
\(\Leftrightarrow\left(x+3\right)^2+2\)min
Ta thấy : \(\left(x+3\right)^2\ge0\)
\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)
c) Ta thấy : \(\left(x+1\right)^2\ge0\)
\(\Leftrightarrow x^2+2x+1\ge0\)
\(\Leftrightarrow-x^2-2x-1\le0\)
\(\Leftrightarrow C=-x^2-2x+7\le8\)
Dấu " = " xảy ra :
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy \(Max_C=8\Leftrightarrow x=-1\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Bài 1 và 2 dễ rồi bạn tự làm được
Bài 3 :
\(a)\) Ta có :
\(\left|2x+3\right|\ge0\)
Mà \(\left|2x+3\right|=x+2\)
\(\Rightarrow\)\(x+2\ge0\)
\(\Rightarrow\)\(x\ge-2\)
Trường hợp 1 :
\(2x+3=x+2\)
\(\Leftrightarrow\)\(2x-x=2-3\)
\(\Leftrightarrow\)\(x=-1\) ( thoã mãn )
Trường hợp 2 :
\(2x+3=-x-2\)
\(\Leftrightarrow\)\(2x+x=-2-3\)
\(\Leftrightarrow\)\(3x=-5\)
\(\Leftrightarrow\)\(x=\frac{-5}{3}\) ( thoã mãn )
Vậy \(x=-1\) hoặc \(x=\frac{-5}{3}\)
Chúc bạn học tốt ~
a) Vì : \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Nên : \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2\ge0\forall x\)
Suy ra : C = \(\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\ge-10\forall x\)
Vậy Cmin = -10 khi x = -1 và y = \(\frac{1}{3}\)
b) VÌ \(\left(2x-1\right)^2\ge0\forall x\)nên \(D\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy....
a) Ta có: \(\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|\ge0\forall x\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\forall x\)
Dấu '=' xảy ra khi 1-2x=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức A=3|1-2x|-5 là -5 khi \(x=\dfrac{1}{2}\)
b) Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4\ge1\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-2\forall x\)
Dấu '=' xảy ra khi x=0
Vậy: Giá trị nhỏ nhất của biểu thức \(B=\left(2x^2+1\right)^4-3\) là -2 khi x=0
Bài 1:
\(a)A=3|2x-1|-5\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow3|2x-1|\ge0\) \(\forall x\)
\(\Rightarrow3|2x-1|-5\ge-5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}\)
\(b)x^2+3|y-2|-1\)
Vì \(\hept{\begin{cases}x^2\ge0\forall x\\3|y-2|\ge0\forall y\end{cases}}\)
\(\Rightarrow x^2+3|y-2|-1\ge-1\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy \(Min_B=-1\Leftrightarrow x=0,y=2\)
\(c)\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge0\)\(\forall x\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x^2+1=0\)
\(\Leftrightarrow2x^2=-1\)
\(\Leftrightarrow x^2=-\frac{1}{2}\left(voli\right)\)
Vậy không tìm được gt x
\(d)D=|x-\frac{1}{2}|+\left(y+2\right)^2+11\)
Vì \(\hept{\begin{cases}|x-\frac{1}{2}|\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow|x-\frac{1}{2}|+\left(y+2\right)^2+11\ge11\) \(\forall x,y\)
Dấu '=' xảy ra:
\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
Vậy \(Min_D=11\Leftrightarrow x=\frac{1}{2},y=-2\)
Bài 2:
\(a)A=10-5|x-2|\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow5|x-2|\ge0\)\(\forall x\)
\(\Rightarrow\)\(10-5|x-2|\le10\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_A=10\Leftrightarrow x=2\)
\(b)B=5-|2x-1|^2\)
Vì \(|2x-1|^2\ge0\)\(\forall x\)
\(\Rightarrow5-|2x-1|^2\le5\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=5\Leftrightarrow x=\frac{1}{2}\)
\(c)C=\frac{1}{|x-2|+3}\)
Vì \(|x-2|\ge0\)\(\forall x\)
\(\Rightarrow|x-2|+3\ge3\) \(\forall x\)
\(\Rightarrow\frac{1}{|x-2|+3}\le\frac{1}{3}\) \(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(Max_C=\frac{1}{3}\Leftrightarrow x=2\)