Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x - y - z = 0 nên x - z = y ; y - x = -z ; z + y = x
Suy ra : B = \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right).\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{z}.\frac{-z}{y}.\frac{x}{z}=-1\)
Từ \(\frac{y+x-z}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x-z}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+x}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
* Xét \(x+y+z\ne0\)
\(\Rightarrow x=y=z\)
Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=2.2.2=8\)
* Xét \(x+y+z=0\)
\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)
Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)
Ta có :
\(x-y-z=0\)
\(\Rightarrow\)\(\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)
Lại có :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\) ( hình như cái cuối là dấu "+" )
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay \(x-z=y\)\(;\)\(y-x=-z\) và \(z+y=x\) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được :
\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(B=\frac{-xyz}{xyz}\)
\(B=-1\)
Vậy \(B=-1\)
Chúc bạn học tốt ~
Ap dụng tính chất tỉ lệ thức ta có
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Nên ta có
\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)
\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)
\(1+\frac{z}{x}=\frac{2y}{x}\)
Chỗ này mình làm hơi tắt nên tự hiệu nhé
\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)
\(A=\left|-x-2011\right|+\left|x+2012\right|\ge\left|-x-2011+x+2012\right|=1\)
\(\Rightarrow A_{min}=1\) khi \(\left\{{}\begin{matrix}x+2011\le0\\x+2012\ge0\end{matrix}\right.\) \(\Rightarrow-2012\le x\le-2011\)
Bài 2:
\(x-y-z=0\Rightarrow\left\{{}\begin{matrix}y-x=-z\\x-z=y\\y+z=x\end{matrix}\right.\)
\(B=\left(\frac{x-z}{x}\right)\left(\frac{y-x}{y}\right)\left(\frac{y+z}{z}\right)=\frac{y.\left(-z\right).x}{xyz}=-1\)
Bài 3:
Gọi chiều dài 3 cạnh tương ứng là \(a,b,c\)
\(\Rightarrow4a=12b=cx\Rightarrow\left\{{}\begin{matrix}a=\frac{cx}{4}\\b=\frac{cx}{12}\end{matrix}\right.\)
Mặt khác theo BĐT tam giác ta có: \(a-b< c< a+b\)
\(\Rightarrow\frac{cx}{4}-\frac{cx}{12}< c< \frac{cx}{4}+\frac{cx}{12}\Rightarrow\frac{x}{4}-\frac{x}{12}< 1< \frac{x}{4}+\frac{x}{12}\)
\(\Rightarrow\frac{x}{6}< 1< \frac{x}{3}\) \(\Rightarrow3< x< 6\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)