K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2022

hỏi từng bài thôi bạn. đưa quá nhiều vào một bài giải quá lâu, gõ toán tốn thời gian. chưa kể olm không có lưu tự động, đang làm bị gì coi như xong.

17 tháng 1 2018

Ta có : 

\(B=x\left(x-2\right)y\left(y+6\right)+12x^2-24x+3y^2+18y+36\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y+12\right)+12\)

\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)+12\)

\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+12\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+12\ge2.3+12=18\)

3 tháng 9 2018

\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)

   \(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)

   \(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)

   \(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)

   \(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)

   \(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)

Dấu "=" xảy ra khi: 

\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

Vậy GTNN của A là 2017 khi \(x=1,y=-3\)

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

13 tháng 6 2019

\(xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2045.\)

\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)

\(=\left[\left(x^2-2x\right)\left(y^2+6y\right)+3\left(y^2+6y\right)\right]+12\left(x^2-2x+3\right)+2009.\)

\(=\left(x^2-2x+3\right)\left(y^2+6x\right)+12\left(x^2-2x+3\right)+2009\)

\(=\left(x^2-2x+3\right)\left(y^2+6x+12\right)+2009\)

\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)

\(\left(y+3\right)^2\ge0\forall y\Leftrightarrow\left(y+3\right)^2+3\ge3\)

Suy ra \(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\ge2.3+2009=2015\)

Vậy GTNN của B=2015 khi x=1, y=-3.

16 tháng 2 2024

sai từ dấu = thứ 3 rồi bạn

21 tháng 8 2019

Tìm min mn  ạ

22 tháng 8 2019

Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v

d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)

\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)

Đẳng thức xảy ra khi x = 1/2

2 tháng 11 2024

BÀi 2:

Đặt x = 11...1(n chữ số 1), khi đó

a = x

b = 100..05(n-1 chữ số 0) = 100...00(n chữ số 0) + 5

b = 99...9(n chữ số 9) + 1 + 5 = 9x +6

=> \(ab+1=x\left(9x+6\right)+1\)

=> \(ab+1=9x^2+6x+1=\left(3x+1\right)^2\)

Vậy ab + 1 là 1 số chính phương