Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{6}{x^2-2x+3}=\frac{6}{x^2-2x+1+2}=\frac{6}{\left(x-1\right)^2+2}\le3\)
Dấu = xảy ra khi x-1=0
=> x=1
B tương tự
bài 2:
\(A=\frac{5}{-x^2+2x}=\frac{5}{-\left(x^2-2x+1\right)+1}=\frac{5}{-\left(x-1\right)^2+1}\le5\)(x khác 2)
dấu = xảy ra khi x-1=0
=> x=1
tìm GTLN chứ?????
a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)
\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)
\(đếnđâytịt\)
b
c, =3 dễ
\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)
a, \(A=\dfrac{6}{x^2-2x+3}\)\(=\dfrac{6}{x^2-2x+1+2}=\dfrac{6}{\left(x-1\right)^2+2}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\dfrac{1}{\left(x-1\right)^2+2}\le\dfrac{1}{2}\Leftrightarrow\dfrac{6}{\left(x-1\right)^2+2}\le3\)
Dấu bằng xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy MaxA = 3 khi x = 1
b, \(B=\dfrac{4}{x^2+6x+11}=\dfrac{4}{x^2+6x+9+2}=\dfrac{4}{\left(x+3\right)^2+2}\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\Leftrightarrow\left(x+3\right)^2+2\ge2\)\(\Leftrightarrow\dfrac{1}{\left(x+3\right)^2+2}\le\dfrac{1}{2}\Leftrightarrow\dfrac{4}{\left(x+3\right)^2+2}\le2\)
Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy MaxB = 2 khi x = -3
Bài 2:
\(A=\dfrac{5}{2x-x^2}=\dfrac{5}{-\left(x^2-2x+1\right)+1}=\dfrac{5}{-\left(x-1\right)^2+1}\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow-\left(x-1\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x-1\right)^2+1\le1\Leftrightarrow\dfrac{1}{-\left(x-1\right)^2+1}\ge1\)\(\Leftrightarrow\dfrac{5}{-\left(x-1\right)^2+1}\ge5\)
Dấu bằng xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy MinA = 5 khi x = 1