K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

a, \(A=\dfrac{6}{x^2-2x+3}\)\(=\dfrac{6}{x^2-2x+1+2}=\dfrac{6}{\left(x-1\right)^2+2}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow\left(x-1\right)^2+2\ge2\)

\(\Leftrightarrow\dfrac{1}{\left(x-1\right)^2+2}\le\dfrac{1}{2}\Leftrightarrow\dfrac{6}{\left(x-1\right)^2+2}\le3\)

Dấu bằng xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy MaxA = 3 khi x = 1

b, \(B=\dfrac{4}{x^2+6x+11}=\dfrac{4}{x^2+6x+9+2}=\dfrac{4}{\left(x+3\right)^2+2}\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\Leftrightarrow\left(x+3\right)^2+2\ge2\)\(\Leftrightarrow\dfrac{1}{\left(x+3\right)^2+2}\le\dfrac{1}{2}\Leftrightarrow\dfrac{4}{\left(x+3\right)^2+2}\le2\)

Dấu bằng xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

Vậy MaxB = 2 khi x = -3

Bài 2:

\(A=\dfrac{5}{2x-x^2}=\dfrac{5}{-\left(x^2-2x+1\right)+1}=\dfrac{5}{-\left(x-1\right)^2+1}\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\Leftrightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-1\right)^2+1\le1\Leftrightarrow\dfrac{1}{-\left(x-1\right)^2+1}\ge1\)\(\Leftrightarrow\dfrac{5}{-\left(x-1\right)^2+1}\ge5\)

Dấu bằng xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy MinA = 5 khi x = 1

11 tháng 1 2019
https://i.imgur.com/T4wQQF5.jpg
11 tháng 1 2019

\(A=\frac{6}{x^2-2x+3}=\frac{6}{x^2-2x+1+2}=\frac{6}{\left(x-1\right)^2+2}\le3\)

Dấu = xảy ra khi x-1=0

=> x=1

B tương tự

bài 2:

\(A=\frac{5}{-x^2+2x}=\frac{5}{-\left(x^2-2x+1\right)+1}=\frac{5}{-\left(x-1\right)^2+1}\le5\)(x khác 2)

dấu = xảy ra khi x-1=0

=> x=1

tìm GTLN chứ????? 

15 tháng 3 2019

sáng mai chị làm cho

9 tháng 7 2016

bn viết từng câu đi mik giải cho

12 tháng 8 2016

a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)

    \(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)

30 tháng 8 2016

Bài 1:

a) \(\left(2x-1\right)\left(2x+1\right)=\left(2x\right)^2-1^2=4x^2-1\)

b) \(-\left(5+4y\right)\left(5-4y\right)=-\left[\left(5+4y\right)\left(5-4y\right)\right]=-\left[5^2-\left(4y\right)^2\right]=-\left(25-16y^2\right)=-25+16y^2\)

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)a) thu gọn f(x)b) Chứng tỏ f(x) k có nghiệmBài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::Cho đa...
Đọc tiếp

Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5 Các bạn giải giùm mình gấp với ạ! Mình sắp phải kiểm tra rồi::

Cho đa thức f(x) = (2x - 3)2 - (3x + 1) ( x - 1) + 5x + 3   ( Bài này các bạn k làm cx được)

a) thu gọn f(x)

b) Chứng tỏ f(x) k có nghiệm

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau ( khi x bằng mấy)

a) A = x2 - 6x + 10     b) B = 9x2 - 6x -5    c) C = 2x2 - 5x + 5

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

d) D = x4 - 4x2 + 2023     e) E = 5x2 - 4xy + y2 + 8x + 1        f) F = 2x2 - 2xy + y2 + 12x - 4y

 

 

0